The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307642 a(n) = n!*Sum_{i=1..n} (Sum_{j=1..i} (i/j)). 0
 1, 8, 57, 428, 3510, 31644, 312984, 3380544, 39664080, 502927200, 6858181440, 100135491840, 1559197261440, 25797280723200, 452046655872000, 8364495012249600, 162994310248089600, 3336683369519001600, 71596721810396160000, 1606993396943155200000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = n! * Sum_{i=1..n} (Sum_{j=1..i} (i/j)). a(n) = n * A182541(n+2). a(n) = (1/4) * n * (n+1)! * (2*harmonic(n+1) - 1). EXAMPLE a(3) = 57 because a(3) = 3!*Sum_{i=1..3} (Sum_{j=1..i} (i/j)). MATHEMATICA Array[#!*Sum[Sum[i/j, {j, i}], {i, #}] &, 25] (* Michael De Vlieger, Apr 21 2019 *) Table[n*(n+1)!*(2*HarmonicNumber[n+1] -1)/4, {n, 25}] (* G. C. Greubel, Jul 15 2019 *) PROG (PARI) a(n)=n!*sum(i=1, n, sum(j=1, i, i/j)); \\ Michel Marcus, Apr 20 2019 (MAGMA) [n*Factorial(n+1)*(2*HarmonicNumber(n+1)-1)/4: n in [1..25]]; // G. C. Greubel, Jul 15 2019 (Sage) [n*factorial(n+1)*(2*harmonic_number(n+1)-1)/4 for n in (1..25)] # G. C. Greubel, Jul 15 2019 (GAP) List([1..25], n-> n*Factorial(n+1)*(1+2*Sum([2..n+1], j-> 1/j))/4 ); # G. C. Greubel, Jul 15 2019 CROSSREFS Cf. A001008/A002805 (harmonic), A182541. Sequence in context: A181246 A281355 A281912 * A199555 A241594 A241595 Adjacent sequences:  A307639 A307640 A307641 * A307643 A307644 A307645 KEYWORD nonn AUTHOR Pedro Caceres, Apr 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:43 EDT 2020. Contains 337310 sequences. (Running on oeis4.)