

A306903


Sum over all partitions of n of the bitwise XOR of the parts.


6



0, 1, 2, 7, 8, 19, 26, 61, 70, 126, 146, 270, 308, 519, 604, 1054, 1222, 1929, 2208, 3454, 3930, 5862, 6576, 9833, 11102, 16052, 17904, 25752, 28764, 40479, 44830, 62988, 70188, 97151, 107662, 148141, 164710, 223783, 247380, 334035, 370406, 495313, 547000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000
Wikipedia, Bitwise operation
Wikipedia, Commutative property
Wikipedia, Identity element
Wikipedia, Partition (number theory)
Wikipedia, Truth table


FORMULA

a(n) is odd <=> n in { A067567 }.


MAPLE

b:= proc(n, i, r) option remember; `if`(i<1, 0, (t>
`if`(i<n, b(ni, min(i, ni), t), 0)+
`if`(i=n, t, 0)+b(n, i1, r))(Bits[Xor](i, r)))
end:
a:= n> b(n$2, 0):
seq(a(n), n=0..45);


CROSSREFS

Cf. A006906, A066186, A067567, A306884, A306895, A306901, A306902, A306925.
Sequence in context: A101518 A055247 A015617 * A026579 A167767 A054601
Adjacent sequences: A306900 A306901 A306902 * A306904 A306905 A306906


KEYWORD

nonn,base


AUTHOR

Alois P. Heinz, Mar 15 2019


STATUS

approved



