login
A306925
Sum over all partitions of n into distinct parts of the bitwise XOR of the parts.
4
0, 1, 2, 6, 6, 11, 16, 35, 36, 46, 50, 84, 94, 130, 158, 285, 338, 424, 460, 616, 672, 810, 816, 1162, 1346, 1680, 1754, 2308, 2562, 3164, 3288, 4486, 5306, 6838, 7522, 9627, 11006, 13496, 14200, 17462, 19682, 24036, 25650, 30842, 33884, 40302, 41644, 48896
OFFSET
0,3
LINKS
FORMULA
a(n) is odd <=> n in { A067589 }.
a(n) is odd <=> A067588(n) is odd.
MAPLE
b:= proc(n, i, r) option remember; `if`(i*(i+1)/2<n or
n=0, 0, (t-> `if`(i<n, b(n-i, min(i-1, n-i), t), 0)
+`if`(i=n, t, 0)+b(n, i-1, r))(Bits[Xor](i, r)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..51);
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Mar 16 2019
STATUS
approved