login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306900
a(n) is the total number of sum of weighted records over set partitions of [n].
0
0, 1, 6, 32, 169, 921, 5248, 31388, 197133, 1298804, 8962070, 64646382, 486545028, 3813611643, 31075203744, 262802902944, 2303066401903, 20883838079019, 195682855232648, 1892280736283390, 18862445424597027, 193603796552389848, 2044036227150998116, 22177186058234124636
OFFSET
0,3
LINKS
Walaa Asakly, Sum of weighted records in set partitions, arXiv:1906.00680 [math.CO], 2019.
FORMULA
a(n) = 3*(B(n+3) - B(n+2))/4 - (n+7/4)*B(n+1) - (n+1)*B(n)/2 where B(n) is the n-th Bell number, A000110(n).
PROG
(PARI) B(n) = sum(k=0, n, stirling(n, k, 2)); \\ A000110
a(n) = 3*(B(n+3) - B(n+2))/4 - (n+7/4)*B(n+1) - (n+1)*B(n)/2;
CROSSREFS
Cf. A000110.
Sequence in context: A082585 A084326 A199699 * A137637 A125190 A264460
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 04 2019
STATUS
approved