login
A306724
Least number k > 1 such that A062354(k) is an n-th power, where A062354 is the product of sigma (A000203) and phi (A000010).
0
2, 14, 3, 170, 3570, 592922491, 17194752239, 498892319051, 14467877252479, 421652049419104, 12227909433154016, 377536703748630244, 926952707565364023467, 1485824943636552705389704010031591742370238670767627108613, 18031470774665264926975299618474551942701594055200456829621877, 219559123426400144842876467461078524942414020727022446946702813568
OFFSET
1,1
COMMENTS
10^70 < a(17) <= 842075173279428103504117746722346581987825143261978794674517195307859044272000. - Max Alekseyev, Oct 07 2023
EXAMPLE
A062354(14) = 12^2;
A062354(3) = 2^3;
A062354(170) = 12^4;
A062354(3570) = 24^5;
A062354(592922491) = 840^6;
A062354(17194752239) = 840^7.
MATHEMATICA
a[n_] := Module[{k=2}, While[!IntegerQ[Surd[DivisorSigma[1, k]*EulerPhi[k], n]], k++]; k]; Array[a, 1, 5]
PROG
(PARI) a(n) = {my(k=2); while (!ispower(sigma(k)*eulerphi(k), n), k++); k; } \\ Michel Marcus, Mar 06 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 06 2019
EXTENSIONS
a(8) from Giovanni Resta, Mar 06 2019
a(9)-a(13) from Daniel Suteu confirmed, a(14)-a(16) added by Max Alekseyev, Oct 06 2023
STATUS
approved