The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306723 Composite squarefree numbers k such that k^2+1 is divisible by p-1, where p are all the prime factors of k. 1
 33, 36003, 426747, 220067817 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Tested up to 3*10^10. - Giovanni Resta, Mar 06 2019 LINKS EXAMPLE Prime factors of 33 are 3, 11 and 33^2+1 = 1090, 1090/2 = 545, 1090/10 = 109. Prime factors of 220067817 are 3, 59, 131, 9491 and 220067817^2+1 = 48429844079145490, 48429844079145490/2 = 24214922039572745, 48429844079145490/58 = 834997311709405, 48429844079145490/130 = 372537262147273, 48429844079145490/9490 = 5103250166401. MAPLE with(numtheory): P:=proc(q) local a, k, ok, n; for n from 1 to q do if not isprime(n) and issqrfree(n) then a:=factorset(n); ok:=1; for k from 1 to nops(a) do if frac((n^2+1)/(a[k]+1))>0 then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^20); PROG (PARI) isok(n) = {if (issquarefree(n) && !isprime(n) && (n>1), my(f = factor(n)[, 1], x = n^2+1); for (k=1, #f, if ((x % (f[k]-1)), return (0)); ); return (1); ); return (0); } \\ Michel Marcus, Mar 12 2019 CROSSREFS Cf. A002997, A006972, A208728, A225711, A304291, A306685. Sequence in context: A238565 A232456 A229932 * A238611 A006274 A230174 Adjacent sequences:  A306720 A306721 A306722 * A306724 A306725 A306726 KEYWORD nonn,hard,more AUTHOR Paolo P. Lava, Mar 06 2019 EXTENSIONS a(4) from Giovanni Resta, Mar 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 13:17 EST 2021. Contains 349416 sequences. (Running on oeis4.)