login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306722
Number of pairs of primes (p,q), p < q, which are a solution of the Diophantine equation (p-1)*(q-1) = (2n)^2.
3
1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 0, 3, 1, 1, 1, 1, 0, 3, 0, 3, 1, 1, 0, 3, 1, 1, 4, 3, 0, 3, 0, 1, 4, 0, 1, 3, 1, 0, 0, 3, 0, 3, 0, 1, 4, 0, 1, 3, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 5, 0, 1, 4, 0, 1, 4, 1, 0, 0, 4, 0, 6, 1, 1, 4, 0, 0, 5, 0, 4, 1
OFFSET
1,3
COMMENTS
a(n) is also the number of semiprimes p*q whose totient is a square (A247129) and equal to (2*n)^2.
From Robert G. Wilson v, Mar 30 2019, Mar 30 2019: (Start)
First occurrence of k=1,2,3,...: 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, ..., . = A307245.
Start of table:
a(k_i) = n:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
n\
0 11 17 19 23 29 31 34 38 39 41 43 46 49 51 53 ...
1 1 2 4 5 7 8 9 13 14 15 16 21 22 25 26 ...
2 3 6 54 56 58 87 100 115 116 123 138 148 160 170 176 ...
3 10 12 18 20 24 28 30 36 40 42 48 84 88 99 144 ...
4 27 33 45 63 66 70 75 80 112 126 135 153 156 162 165 ...
5 60 78 90 102 140 168 200 260 264 285 288 315 378 408 432 ...
6 72 105 108 130 150 306 348 357 450 495 528 560 672 696 708 ...
7 120 132 240 297 312 330 390 588 750 882 980 1140 1176 1190 1215 ...
8 180 198 210 280 396 468 540 612 648 700 810 910 945 960 1020 ...
9 270 420 660 858 918 990 1248 1620 1782 1920 2088 2184 2352 2376 2688 ...
... (End).
If n is a prime <> 3, then a(n) = 1 if n is in A052291 and 0 otherwise, and a(n^2) = 1 if 2*n+1 and 2*n^3+1 are primes and 0 otherwise. - Robert Israel, Apr 04 2019
LINKS
EXAMPLE
a(2) = 1 because (2*2)^2 = (2-1) * (17-1), also, phi(2*17) = 4^2.
a(3) = 2 because (2*3)^2 = (2-1) * (37-1) = (3-1) * (19-1), also, phi(2*37) = phi(3*19) = 6^2.
a(11) = 0 because (2*11)^2 can't be written as (p-1)*(q-1) with p < q.
MAPLE
f:= proc(n) local w;
w:= (2*n)^2;
nops(select(t -> t < 2*n and isprime(t+1) and isprime(w/t + 1), numtheory:-divisors(w)))
end proc:
map(f, [$1..100]); # Robert Israel, Apr 04 2019
MATHEMATICA
f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# + 1] && PrimeQ[ 4n^2/# + 1] &]; Array[f, 81] (* Robert G. Wilson v, Mar 30 2019 *)
PROG
(PARI) a(n) = {my(nb = 0, nn = 4*n^2); fordiv(nn, d, if (d == 2*n, break); if (isprime(d+1) && isprime(nn/d+1), nb++); ); nb; } \\ Michel Marcus, Mar 06 2019
KEYWORD
nonn
AUTHOR
Bernard Schott, Mar 06 2019
STATUS
approved