login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306548
Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.
1
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
OFFSET
0,7
COMMENTS
For n > 0 an odd-power identity n^(2m+1)+1, m >= 0 can be found using the current sequence. The sum of the n-th diagonal of T(n,k) over 0 <= k <= m multiplied by A(m,k) gives n^(2m+1)-1, where A(m,k) = A302971(m,k)/A304042(m,k). For example, consider the case n=4, m=2: the n-th diagonal of T(n, 0 <= k <= m) is {5, 10, 34}, and the m-th row of triangle A(m, 0 <= k <= m) is {1, 0, 30}, thus (3+1)^5 + 1 = 5*1 + 10*0 + 34*30 = 1025.
LINKS
D. V. Widder et al., The Convolution Transform, Bull. Amer. Math. Soc. 60 (1954), 444-456.
Wikipedia, Convolution.
Wikipedia, Convolution power.
FORMULA
f(m, s) = s^m, if s >= 0;
f(m, s) = 0, otherwise.
F(n,m) = Sum_{k} f(m, n-k) * f(m, k), -oo < k < +oo;
T(n,k) = F(n-k, k).
EXAMPLE
==================================================================
k= 0 1 2 3 4 5 6 7 8 9 10
==================================================================
n=0: 2;
n=1: 2, 0;
n=2: 3, 0, 0;
n=3: 4, 1, 0, 0;
n=4: 5, 4, 1, 0, 0;
n=5: 6, 10, 8, 1, 0, 0;
n=6: 7, 20, 34, 16, 1, 0, 0;
n=7: 8, 35, 104, 118, 32, 1, 0, 0;
n=8: 9, 56, 259, 560, 418, 64, 1, 0, 0;
n=9: 10, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0;
n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0; 0;
...
MATHEMATICA
f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}];
F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}];
T[n_, k_] := F[n - k, k];
Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]
CROSSREFS
Nonzero terms of columns k=0..5 give: A000027, A000292, A033455, A145216, A145217, A145218.
Partial sums of columns k=1..2 give: A000332, A259181.
Sequence in context: A221515 A221984 A071920 * A320531 A345698 A369195
KEYWORD
nonn,tabl
AUTHOR
Kolosov Petro, Feb 23 2019
EXTENSIONS
Edited by Kolosov Petro, Mar 13 2019
STATUS
approved