login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306299 Number of binary carry-connected subsets of [n] containing n (for n > 0). 2
1, 1, 1, 4, 1, 12, 28, 64, 1, 212, 452, 960, 1972, 4032, 8128, 16384, 1, 64284, 129260, 259904, 520636, 1043264, 2087744, 4177920, 8381836, 16768832, 33541952, 67092480, 134201152, 268419072, 536854528, 1073741824, 1, 4294569380, 8589336404, 17179068096 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Two integers are binary carry-connected if their bitwise AND is not zero.

For n = 0 the carry-connected subset is the empty set.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1024

Wikipedia, Bitwise operation

Wikipedia, Partition of a set

FORMULA

a(n) = A325105(n) - A325105(n-1) for n > 0, a(0) = 1.

a(n) = 1 <=> n in { A131577 }.

a(n) mod 4 = 0 <=> not (n in { A131577 }).

MAPLE

h:= proc(n, s) local i, m; m:= n;

      for i in s do m:= Bits[Or](m, i) od; {m}

    end:

g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union

              h(n, w)))(select(x-> Bits[And](n, x)>0, s)):

b:= proc(n, s) option remember; `if`(n=0,

      `if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s)))

    end:

a:= n-> `if`(n=0, 1, b(n-1, {n})):

seq(a(n), n=0..42);

MATHEMATICA

h[n_, s_] := Module[{i, m = n}, Do[m = BitOr[m, i], {i, s}]; {m}];

g[n_, s_] := Function[w, If[w == {}, s ~Union~ {n}, s ~Complement~ w ~Union~ h[n, w]]][Select[s, BitAnd[n, #] > 0&]];

b[n_, s_] := b[n, s] = If[n == 0, If[Length[s] > 1, 0, 1], b[n - 1, s] + b[n - 1, g[n, s]]];

a[n_] := If[n == 0, 1, b[n - 1, {n}]];

a /@ Range[0, 42] (* Jean-Fran├žois Alcover, May 10 2020, after Maple *)

CROSSREFS

Partial differences of A325105.

Cf. A131577.

Sequence in context: A274087 A105197 A157398 * A089503 A019236 A019237

Adjacent sequences:  A306296 A306297 A306298 * A306300 A306301 A306302

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Mar 31 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 13:59 EDT 2022. Contains 356077 sequences. (Running on oeis4.)