login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089503
Triangle of numbers used for basis change between certain falling factorials.
2
1, 1, 4, 1, 12, 30, 1, 24, 168, 336, 1, 40, 540, 2880, 5040, 1, 60, 1320, 13200, 59400, 95040, 1, 84, 2730, 43680, 360360, 1441440, 2162160, 1, 112, 5040, 117600, 1528800, 11007360, 40360320, 57657600, 1, 144, 8568, 274176, 5140800, 57576960
OFFSET
1,3
COMMENTS
Used to relate array A078739 ((2,2)-Stirling2) to triangle A071951 (Legendre-Stirling).
FORMULA
fallfac(x+n-1, 2*n) = Sum_{m=1..n} a(n, m)*fallfac(x, 2*n-(m-1)), n>=1 where fallfac(x, k) := Product_{j=1..k} (x+1-j), with fallfac(n, k) = A068424(n, k) (falling factorials). a(n, m) = 0 if n < m.
T(n, m) = binomial(n-1, m-1)*binomial(2n, m-1)*m!, for 1 <= m <= n, with binomial(n, m) = A007318. - Stefano Negro, Nov 10 2021
EXAMPLE
The triangle begins:
n\m 1 2 3 4 5 6 7 8 ...
1: 1
2: 1 4
3: 1 12 30
4: 1 24 168 336
5: 1 40 540 2880 5040
6: 1 60 1320 13200 59400 95040
7: 1 84 2730 43680 360360 1441440 2162160
8: 1 112 5040 117600 1528800 11007360 40360320 57657600
...
Row 9: 1 144 8568 274176 5140800 57576960 374250240 1283143680 1764322560
Row 10: 1 180 13680 574560 14651280 234420480 2344204800 14065228800 45711993600 60949324800.
Reformatted - Wolfdieter Lang, Apr 10 2013
n=3: fallfac(x+2,6) = 1*fallfac(x,6) + 12*fallfac(x,5) + 30*fallfac(x,4).
MATHEMATICA
eq[n_, x_] := Sum[FactorialPower[x, 1 - m + 2*n]*a[n, m], {m, 1, n}] == FactorialPower[x + n - 1, 2*n]; eq[n_] := Table[eq[n, x], {x, n + 1, 2*n}]; row[n_] := First[Table[a[n, m], {m, 1, n}] /. Solve[eq[n]]]; Array[row, 10] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
a[n_, m_]:= Binomial[n-1, m-1]*Binomial[2n, m-1]*Gamma[m]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] (* Stefano Negro, Nov 10 2021 *)
CROSSREFS
Sequence in context: A105197 A157398 A306299 * A019236 A019237 A019238
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved