login
A306298
Numbers k such that k^2-1 is divisible by exactly two distinct primes.
1
4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 18, 24, 26, 28, 30, 33, 42, 48, 60, 63, 72, 80, 82, 102, 108, 126, 138, 150, 168, 180, 192, 198, 228, 240, 242, 255, 270, 282, 312, 348, 360, 420, 432, 462, 513, 522, 570, 600, 618, 642, 660, 728, 810, 822, 828, 840, 858, 882
OFFSET
1,1
COMMENTS
k^2 - 1 = (k-1)*(k+1) so for most terms, k-1 and k+1 are in A000961. - David A. Corneth, Mar 31 2019
Odd terms are either 2*p-1 where p is a Fermat prime (A019434) or 2*p+1 where p is a Mersenne prime (A000668). - Robert Israel, Mar 31 2019
LINKS
L. J. Gerstein, A reformulation of the Goldbach conjecture, Math. Mag., 66 (1993), 44-45.
MAPLE
select(t -> nops(numtheory:-factorset(t+1) union numtheory:-factorset(t-1)) = 2, [$2..1000]); # Robert Israel, Mar 31 2019
MATHEMATICA
Select[Range@ 900, PrimeNu[#^2 - 1] == 2 &] (* Michael De Vlieger, Apr 01 2019 *)
PROG
(PARI) is(n) = {omega(n^2 - 1) == 2} \\ David A. Corneth, Mar 31 2019
CROSSREFS
Cf. A000961, A001221, A014574 (the "big omega" analog).
Sequence in context: A308040 A287961 A030791 * A227763 A039091 A189817
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 31 2019
STATUS
approved