login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306255
Wieferich primes to base 26.
4
3, 5, 71, 486999673, 6695256707
OFFSET
1,1
COMMENTS
Prime numbers p such that p^2 divides 26^(p-1) - 1.
No more terms up to 9.8*10^13.
LINKS
P. L. Montgomery, New Solutions of a^p-1 == 1 (mod p^2), Mathematics of Computation, Vol. 61, No. 203 (1993), 361-363.
Wikipedia, Wieferich prime
MATHEMATICA
Select[Prime[Range[26*10^6]], PowerMod[26, #-1, #^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Aug 23 2024 *)
PROG
(PARI) forprime(p=2, , if(Mod(26, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), this sequence (b=26), A306256 (b=30).
Sequence in context: A247862 A348205 A145616 * A122912 A062214 A323490
KEYWORD
nonn,hard,more
AUTHOR
Jianing Song, Feb 01 2019
STATUS
approved