login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247862
Primes p that generate the prime quadruplets p^3-4p+2k (for k = -2, -1, 1, 2).
1
3, 5, 67, 395407, 703903, 753583, 874373, 1280417, 1386977, 2920543, 3459487, 3697927, 3905527, 4384543, 4524427, 5630503, 6289343, 6379517, 7882873, 8599993, 8805653
OFFSET
1,1
EXAMPLE
5^3-4*5-4=101, 5^3-4*5-2=103, 5^3-4*5+2=107, 5^3-4*5+4=109 is a prime quadruplet, so 5 is in the sequence.
MATHEMATICA
Select[Prime[Range[600000]], AllTrue[#^3-4#+2{-2, -1, 1, 2}, PrimeQ]&] (* Harvey P. Dale, Feb 16 2024 *)
PROG
(PARI) lista(nn) = {forprime(p=2, nn, pp = p^3-4*p; if (isprime(pp-4) && isprime(pp-2) && isprime(pp+2) && isprime(pp+4), print1(p, ", ")); ); } \\ Michel Marcus, Oct 10 2014
CROSSREFS
Cf. A247863.
Sequence in context: A076513 A222611 A261071 * A348205 A145616 A306255
KEYWORD
nonn,more
AUTHOR
Ray G. Opao, Sep 25 2014
EXTENSIONS
a(8)-a(21) from Michel Marcus, Oct 10 2014
STATUS
approved