login
A304789
Number T(n,k) of partitions of 2n whose Ferrers-Young diagram allows exactly k different domino tilings; triangle T(n,k), n>=0, 0<=k<=A304790(n), read by rows.
5
0, 1, 0, 2, 0, 4, 1, 1, 6, 2, 2, 2, 10, 3, 4, 1, 2, 6, 14, 4, 6, 4, 4, 0, 2, 2, 12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2, 25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2, 46, 44, 7, 12, 17, 14, 8, 8, 8, 0, 4, 12, 5, 6, 0, 8, 2, 0, 8, 4, 0, 4, 0, 0, 0, 2, 2, 0, 0, 4, 1, 2, 0, 0, 2, 0, 1
OFFSET
0,4
LINKS
FORMULA
Sum_{k>0} k * T(n,k) = A304662(n).
T(n,A304790(n)) = 1 for n in { A001105 }.
Sum_{k>=0} T(n,k) = A058696(n) = A000041(2n).
Sum_{k>=1} T(n,k) = A000712(n).
Sum_{k>=2} T(n,k) = A048574(n) = A052837(n).
EXAMPLE
T(2,2) = 1: 22.
T(3,0) = 1: 321.
T(3,1) = 6: 111111, 21111, 3111, 411, 51, 6.
T(3,2) = 2: 2211, 42.
T(3,3) = 2: 222, 33.
T(8,36) = 1: 4444.
Triangle T(n,k) begins:
0, 1;
0, 2;
0, 4, 1;
1, 6, 2, 2;
2, 10, 3, 4, 1, 2;
6, 14, 4, 6, 4, 4, 0, 2, 2;
12, 22, 5, 8, 7, 6, 2, 4, 4, 0, 0, 4, 1, 2;
25, 30, 6, 10, 12, 10, 4, 6, 6, 0, 2, 8, 2, 4, 0, 2, 0, 0, 4, 2, 0, 2;
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od;
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
fi
end:
g:= l-> x^`if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
`if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2*n$2, [])):
seq(T(n), n=0..11);
CROSSREFS
Columns k=0-1 give: A304710, A139582(n) = 2*A000041(n) for n>0.
Row sums give A058696(n) or A000041(2n).
Sequence in context: A188448 A370412 A355917 * A264379 A090888 A154794
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, May 18 2018
STATUS
approved