login
A304633
Expansion of 2/((1 - x)*(3 + 2*x - theta_3(x))), where theta_3() is the Jacobi theta function.
0
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 7, 7, 7, 9, 12, 13, 13, 16, 20, 23, 23, 27, 35, 41, 42, 47, 61, 71, 75, 82, 104, 124, 134, 146, 178, 217, 237, 258, 307, 377, 419, 456, 535, 651, 739, 804, 933, 1126, 1300, 1422, 1629, 1955, 2275, 2513, 2846, 3397, 3972, 4435, 4990, 5904
OFFSET
0,5
COMMENTS
Partial sums of A280542.
FORMULA
G.f.: 1/((1 - x)*(1 - Sum_{k>=2} x^(k^2))).
MATHEMATICA
nmax = 62; CoefficientList[Series[2/((1 - x) (3 + 2 x - EllipticTheta[3, 0, x])), {x, 0, nmax}], x]
nmax = 62; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 2, nmax}])), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)] && k != 1] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 62}]]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 15 2018
STATUS
approved