Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 May 15 2018 20:42:08
%S 1,1,1,1,2,2,2,2,3,4,4,4,5,7,7,7,9,12,13,13,16,20,23,23,27,35,41,42,
%T 47,61,71,75,82,104,124,134,146,178,217,237,258,307,377,419,456,535,
%U 651,739,804,933,1126,1300,1422,1629,1955,2275,2513,2846,3397,3972,4435,4990,5904
%N Expansion of 2/((1 - x)*(3 + 2*x - theta_3(x))), where theta_3() is the Jacobi theta function.
%C Partial sums of A280542.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%F G.f.: 1/((1 - x)*(1 - Sum_{k>=2} x^(k^2))).
%t nmax = 62; CoefficientList[Series[2/((1 - x) (3 + 2 x - EllipticTheta[3, 0, x])), {x, 0, nmax}], x]
%t nmax = 62; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 2, nmax}])), {x, 0, nmax}], x]
%t a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)] && k != 1] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 62}]]
%Y Cf. A000290, A001156, A006456, A010052, A248801, A280542, A302833, A303667.
%K nonn
%O 0,5
%A _Ilya Gutkovskiy_, May 15 2018