login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304619
a(n) = 324*n^2 - 804*n + 468 (n>=2).
2
156, 972, 2436, 4548, 7308, 10716, 14772, 19476, 24828, 30828, 37476, 44772, 52716, 61308, 70548, 80436, 90972, 102156, 113988, 126468, 139596, 153372, 167796, 182868, 198588, 214956, 231972, 249636, 267948, 286908, 306516, 326772, 347676, 369228, 391428, 414276, 437772, 461916, 486708
OFFSET
2,1
COMMENTS
For n>=3, a(n) is the second Zagreb index of the hexagonal network HX(n).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the hexagonal network HX(n) is M(HX(n); x,y) = 12*x^3*y^4 + 6*x^3*y^6 + 6*(n-3)*x^4*y^4 + 12*(n-2)*x^4*y^6 + (9*n^2-33*n+30)*x^6*y^6.
9*a(n) + 277 is a square. - Bruno Berselli, May 18 2018
LINKS
S. Hayat and M. Imran, Computation of topological indices of certain networks, Applied Mathematics and Computation, 240, 2014, 213-228/
M. N. Husin and R. Hasni, More results on computation of topological indices of certain networks, Int. J. Networking and Virtual Organisations, 17, No. 1, 2017, 46-63.
B. Rajan , A. William, C. Grigorius, and S. Stephen, On certain topological indices of silicate, honeycomb and hexagonal networks, J. Comp. & Math. Sci., 3, No. 5, 2012, 530-535.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 18 2018: (Start)
G.f.: 12*x^2*(13 + 42*x - x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
MAPLE
seq(468-804*n+324*n^2, n = 2..40);
PROG
(GAP) List([2..40], n->324*n^2-804*n+468); # Muniru A Asiru, May 18 2018
(PARI) a(n) = 324*n^2 - 804*n + 468; \\ Altug Alkan, May 18 2018
(PARI) Vec(12*x^2*(13 + 42*x - x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 18 2018
CROSSREFS
Cf. A304618.
Sequence in context: A038476 A158550 A156994 * A204718 A232718 A204957
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 17 2018
STATUS
approved