login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304618
a(n) = 108*n^2 - 228*n + 114 (n>=2).
2
90, 402, 930, 1674, 2634, 3810, 5202, 6810, 8634, 10674, 12930, 15402, 18090, 20994, 24114, 27450, 31002, 34770, 38754, 42954, 47370, 52002, 56850, 61914, 67194, 72690, 78402, 84330, 90474, 96834, 103410, 110202, 117210, 124434, 131874, 139530, 147402, 155490, 163794
OFFSET
2,1
COMMENTS
For n>=2, a(n) is the first Zagreb index of the hexagonal network HX(n).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the hexagonal network HX(n) is M(HX(n); x,y) = 12*x^3*y^4 + 6*x^3*y^6 + 6*(n-3)*x^4*y^4 + 12*(n-2)*x^4*y^6 + (9*n^2-33*n+30)*x^6*y^6.
3*a(n) + 19 is a square. - Bruno Berselli, May 18 2018
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
S. Hayat and M. Imran, Computation of topological indices of certain networks, Applied Mathematics and Computation, 240, 2014, 213-228/
M. N. Husin and R. Hasni, More results on computation of topological indices of certain networks, Int. J. Networking and Virtual Organisations, 17, No. 1, 2017, 46-63.
B. Rajan, A. William, C. Grigorius, and S. Stephen, On certain topological indices of silicate, honeycomb and hexagonal networks, J. Comp. & Math. Sci., 3, No. 5, 2012, 530-535.
FORMULA
From Colin Barker, May 18 2018: (Start)
G.f.: 6*x^2*(15 + 22*x - x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
MAPLE
seq(114-228*n+108*n^2, n = 2 .. 40);
PROG
(GAP) List([2..40], n->108*n^2-228*n+114); # Muniru A Asiru, May 18 2018
(PARI) a(n) = 108*n^2 - 228*n + 114; \\ Altug Alkan, May 18 2018
(PARI) Vec(6*x^2*(15 + 22*x - x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 18 2018
CROSSREFS
Cf. A304619.
Sequence in context: A234991 A234984 A158490 * A187300 A237129 A250870
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 17 2018
STATUS
approved