login
A304617
a(n) = 324*n^2 - 564*n + 321 (n>=1).
2
81, 489, 1545, 3249, 5601, 8601, 12249, 16545, 21489, 27081, 33321, 40209, 47745, 55929, 64761, 74241, 84369, 95145, 106569, 118641, 131361, 144729, 158745, 173409, 188721, 204681, 221289, 238545, 256449, 275001, 294201, 314049, 334545, 355689, 377481, 399921, 423009, 446745, 471129, 496161
OFFSET
1,1
COMMENTS
For n>=2, a(n) = the second Zagreb index of the triangular silicate network TSL(n), defined pictorially in the Rosary et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of TSL(n) is M(TSL(n); x,y) = 3*x^3*y^3 + 3*(3*n - 1)*x^3*y^7 + 3*(n - 1)*(n-2)*x^3*y^12 + 3*(n-1)*x^7*y^7 + 6(n-2)*x^7*y^12 + 3*(n-2)*(n-3)*x^12*y^12/2.
9*a(n) - 680 is a square. - Bruno Berselli, May 18 2018
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
M. Rosary, C. J. Deeni, D. Antony Xavier, Computing some topological indices of triangular silicate network, Proceedings of the International Conference on Applied Mathematics and Theoretical Computer Science, 2013.
FORMULA
From Colin Barker, May 18 2018: (Start)
G.f.: 3*x*(27 + 82*x + 107*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
MAPLE
seq(324*n^2-564*n+321, n = 1 .. 40);
MATHEMATICA
Table[324n^2-564n+321, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {81, 489, 1545}, 40] (* Harvey P. Dale, Oct 31 2018 *)
PROG
(GAP) List([1..40], n->324*n^2-564*n+321); # Muniru A Asiru, May 17 2018
(PARI) a(n) = 324*n^2 - 564*n + 321; \\ Altug Alkan, May 18 2018
(PARI) Vec(3*x*(27 + 82*x + 107*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 18 2018
CROSSREFS
Cf. A304616.
Sequence in context: A236427 A235842 A235838 * A205206 A205063 A205057
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 17 2018
STATUS
approved