login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304180
If n = Product (p_j^k_j) then a(n) = max{p_j}^max{k_j}.
2
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 9, 13, 7, 5, 16, 17, 9, 19, 25, 7, 11, 23, 27, 25, 13, 27, 49, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 125, 41, 7, 43, 121, 25, 23, 47, 81, 49, 25, 17, 169, 53, 27, 11, 343, 19, 29, 59, 25, 61, 31, 49, 64, 13, 11, 67, 289, 23, 7, 71, 27, 73, 37, 25
OFFSET
1,2
FORMULA
a(n) = A006530(n)^A051903(n).
a(p^k) = p^k where p is a prime.
a(A005117(k)) = A073482(k).
a(A002110(k)) = A000040(k).
EXAMPLE
a(40) = 125 because 40 = 2^3*5^1, max{2,5} = 5, max{3,1} = 3 and 5^3 = 125.
MATHEMATICA
Table[(FactorInteger[n][[-1, 1]])^(Max @@ Last /@ FactorInteger[n]), {n, 75}]
PROG
(PARI) a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); vecmax(p)^vecmax(e)); \\ Amiram Eldar, Sep 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 07 2018
STATUS
approved