login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304176
Number of partitions of n^3 into exactly n parts.
6
1, 1, 4, 61, 1906, 91606, 6023602, 505853354, 51900711796, 6306147384659, 886745696653253, 141778041323736643, 25417656781153090889, 5052180112449982704619, 1103058286595668300801794, 262487324530101028337614478, 67628783852463631751658038290
OFFSET
0,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..136 (terms 0..96 from Alois P. Heinz)
FORMULA
a(n) = [x^(n^3-n)] Product_{k=1..n} 1/(1-x^k).
EXAMPLE
n | Partitions of n^3 into exactly n parts
--+------------------------------------------------------------
1 | 1.
2 | 7+1 = 6+2 = 5+3 = 4+4.
3 | 25+ 1+1 = 24+ 2+1 = 23+ 3+1 = 23+ 2+2 = 22+ 4+1 = 22+ 3+2
| = 21+ 5+1 = 21+ 4+2 = 21+ 3+3 = 20+ 6+1 = 20+ 5+2 = 20+ 4+3
| = 19+ 7+1 = 19+ 6+2 = 19+ 5+3 = 19+ 4+4 = 18+ 8+1 = 18+ 7+2
| = 18+ 6+3 = 18+ 5+4 = 17+ 9+1 = 17+ 8+2 = 17+ 7+3 = 17+ 6+4
| = 17+ 5+5 = 16+10+1 = 16+ 9+2 = 16+ 8+3 = 16+ 7+4 = 16+ 6+5
| = 15+11+1 = 15+10+2 = 15+ 9+3 = 15+ 8+4 = 15+ 7+5 = 15+ 6+6
| = 14+12+1 = 14+11+2 = 14+10+3 = 14+ 9+4 = 14+ 8+5 = 14+ 7+6
| = 13+13+1 = 13+12+2 = 13+11+3 = 13+10+4 = 13+ 9+5 = 13+ 8+6
| = 13+ 7+7 = 12+12+3 = 12+11+4 = 12+10+5 = 12+ 9+6 = 12+ 8+7
| = 11+11+5 = 11+10+6 = 11+ 9+7 = 11+ 8+8 = 10+10+7 = 10+ 9+8
| = 9+ 9+9.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1)+b(n-i, min(i, n-i)))
end:
a:= n-> b(n^3-n, n):
seq(a(n), n=0..20); # Alois P. Heinz, May 07 2018
MATHEMATICA
$RecursionLimit = 2000;
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + b[n - i, Min[i, n - i]]];
a[n_] := b[n^3 - n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
PROG
(PARI) {a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(n^3-n)))), n^3-n)}
(Python)
import sys
from functools import lru_cache
sys.setrecursionlimit(10**6)
@lru_cache(maxsize=None)
def b(n, i): return 1 if n == 0 or i == 1 else b(n, i-1)+b(n-i, min(i, n-i))
def A304176(n): return b(n**3-n, n) # Chai Wah Wu, Sep 09 2021, after Alois P. Heinz
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 07 2018
STATUS
approved