login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303560
Decimal expansion of constant A = Sum_{n>=1} 1 / (2^n - 1)^n.
2
1, 1, 1, 4, 0, 4, 6, 3, 5, 1, 0, 3, 8, 0, 0, 3, 0, 4, 9, 6, 1, 4, 9, 9, 4, 2, 3, 6, 2, 0, 0, 1, 7, 7, 2, 4, 7, 5, 6, 5, 1, 4, 3, 1, 6, 5, 5, 5, 8, 3, 8, 9, 0, 2, 3, 0, 6, 5, 1, 1, 1, 4, 5, 4, 0, 1, 4, 8, 1, 8, 6, 8, 5, 5, 4, 9, 2, 1, 6, 4, 9, 6, 1, 0, 5, 8, 0, 3, 4, 5, 4, 6, 7, 1, 5, 3, 0, 9, 8, 5, 3, 4, 7, 8, 7, 7, 2, 7, 0, 3, 7, 2, 3, 0, 1, 8, 4, 2, 1, 7
OFFSET
1,4
FORMULA
This constant may be defined by the following expressions.
(1) A = Sum_{n>=1} 1 / (2^n - 1)^n.
(2) A = Sum_{n>=1} (2^n + 1)^(n-1) / 2^(n^2).
(3) A = Sum_{n>=1} A143862(n)/2^n where A143862(n) = Sum_{d|n} binomial(n/d-1, d-1) for n>=1.
EXAMPLE
Constant A = 1.1140463510380030496149942362001772475651431655583890...
This constant equals the sum of the following infinite series.
(1) A = 1 + 1/3^2 + 1/7^3 + 1/15^4 + 1/31^5 + 1/63^6 + 1/127^7 + 1/255^8 + 1/511^9 + 1/1023^10 + 1/2047^11 + 1/4095^12 + 1/8191^13 + 1/16383^14 + ...
Also,
(2) A = 1/2 + 5/2^4 + 9^2/2^9 + 17^3/2^16 + 33^4/2^25 + 65^5/2^36 + 129^6/2^49 + 257^7/2^64 + 513^8/2^81 + 1025^9/2^100 + 2049^10/2^121 + 4097^11/2^144 + ...
Expressed in terms of powers of 1/2, we have
(3) A = 1/2 + 1/2^2 + 1/2^3 + 2/2^4 + 1/2^5 + 3/2^6 + 1/2^7 + 4/2^8 + 2/2^9 + 5/2^10 + 1/2^11 + 9/2^12 + 1/2^13 + 7/2^14 + 7/2^15 + 9/2^16 + 1/2^17 + 19/2^18 + 1/2^19 + 14/2^20 + 16/2^21 + 11/2^22 + ... + A143862(n)/2^n + ...
DECIMAL EXPANSION TO 1000 DIGITS:
A = 1.11404635103800304961499423620017724756514316555838\
90230651114540148186855492164961058034546715309853\
47877270372301842177485420929460338909110702521744\
10383049196253371844115566456211414378684927895066\
60974873819605352670009454376709247947228660654797\
93238935770616752469239881642090329202510251771440\
45431299113929370687739805515426044704234082381940\
40977172853717815297745712948744536180513363052564\
03854647492812806063479313722184475876462500578835\
52045304926771113275210795841642087115096877536105\
78958100347787242164699010158545554930990338272655\
43040184293715344496344121360156193744995971261933\
73889789233802551892919983961109429243561889220300\
14247648527081291849257683339708248465152426049641\
37604659963590944969427064766226893075229683791387\
71510378240823470806036647280652258639308495696013\
02313861338203801779994141266165775176960964298159\
94404826055321122142831544652111697011832111972164\
78072293762844331943953407090067036379926709332730\
54952123380671191947076262400344800454366565708630...
CROSSREFS
Cf. A303561 (binary), A302765, A143862.
Sequence in context: A088375 A217220 A361620 * A341481 A135011 A184907
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Apr 26 2018
STATUS
approved