|
|
A217220
|
|
Theta series of Kagome net with respect to an atom.
|
|
2
|
|
|
1, 4, 0, 4, 6, 0, 0, 8, 0, 4, 0, 0, 6, 8, 0, 0, 6, 0, 0, 8, 0, 8, 0, 0, 0, 4, 0, 4, 12, 0, 0, 8, 0, 0, 0, 0, 6, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 8, 6, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 4, 12, 0, 0, 8, 0, 4, 0, 0, 12, 0, 0, 0, 0, 0, 0, 16, 0, 8, 0, 0, 0, 8, 0, 0, 6, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
REFERENCES
|
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
|
|
LINKS
|
|
|
FORMULA
|
Phi_0(q)-phi_1(q^4) in the notation of SPLAG, Chapter 4.
a(n) = 4 * b(n) where b() is multiplicative with b(2^e) = (1+(-1)^e)*3/4, b(3^e) = 1, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p == 1 (mod 6). - Michael Somos, Feb 01 2017
Expansion of (2 * a(q) + a(q^4)) / 3 in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of phi(q) * phi(q^3) + 2 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017
|
|
EXAMPLE
|
G.f. = 1 + 4*q + 4*q^3 + 6*q^4 + 8*q^7 + 4*q^9 + 6*q^12 + 8*q^13 + ...
|
|
MAPLE
|
S:= series(JacobiTheta3(0, q)*JacobiTheta3(0, q^3)+JacobiTheta2(0, q)*JacobiTheta2(0, q^3)/2, q, 103):
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Feb 01 2017 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, kronecker( d, 3)) + if( n%4==0, 2 * sumdiv( n/4, d, kronecker( d, 3))))}; /* Michael Somos, Feb 01 2017 */
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 80); A[1] + 4*A[2] + 4*A[4] + 6*A[5]; /* Michael Somos, Feb 01 2017 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|