login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217220
Theta series of Kagome net with respect to an atom.
2
1, 4, 0, 4, 6, 0, 0, 8, 0, 4, 0, 0, 6, 8, 0, 0, 6, 0, 0, 8, 0, 8, 0, 0, 0, 4, 0, 4, 12, 0, 0, 8, 0, 0, 0, 0, 6, 8, 0, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 12, 0, 0, 12, 0, 0, 0, 0, 8, 0, 0, 0, 8, 0, 8, 6, 0, 0, 8, 0, 0, 0, 0, 0, 8, 0, 4, 12, 0, 0, 8, 0, 4, 0, 0, 12, 0, 0, 0, 0, 0, 0, 16, 0, 8, 0, 0, 0, 8, 0, 0, 6, 0, 0
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
LINKS
N. J. A. Sloane, Theta series and magic numbers for diamond and certain ionic crystal structures, J. Math. Phys. 28 (1987), pp. 1653-1657.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Phi_0(q)-phi_1(q^4) in the notation of SPLAG, Chapter 4.
a(n) = 4 * b(n) where b() is multiplicative with b(2^e) = (1+(-1)^e)*3/4, b(3^e) = 1, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p == 1 (mod 6). - Michael Somos, Feb 01 2017
Expansion of (2 * a(q) + a(q^4)) / 3 in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of phi(q) * phi(q^3) + 2 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017
EXAMPLE
G.f. = 1 + 4*q + 4*q^3 + 6*q^4 + 8*q^7 + 4*q^9 + 6*q^12 + 8*q^13 + ...
MAPLE
S:= series(JacobiTheta3(0, q)*JacobiTheta3(0, q^3)+JacobiTheta2(0, q)*JacobiTheta2(0, q^3)/2, q, 103):
seq(coeff(S, q, n), n=0..102); # Robert Israel, Nov 20 2017
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* Michael Somos, Feb 01 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, kronecker( d, 3)) + if( n%4==0, 2 * sumdiv( n/4, d, kronecker( d, 3))))}; /* Michael Somos, Feb 01 2017 */
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 80); A[1] + 4*A[2] + 4*A[4] + 6*A[5]; /* Michael Somos, Feb 01 2017 */
CROSSREFS
Cf. A217221.
Sequence in context: A258860 A134944 A088375 * A361620 A303560 A341481
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 05 2012
STATUS
approved