login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of Kagome net with respect to an atom.
2

%I #20 Sep 08 2022 08:46:04

%S 1,4,0,4,6,0,0,8,0,4,0,0,6,8,0,0,6,0,0,8,0,8,0,0,0,4,0,4,12,0,0,8,0,0,

%T 0,0,6,8,0,8,0,0,0,8,0,0,0,0,6,12,0,0,12,0,0,0,0,8,0,0,0,8,0,8,6,0,0,

%U 8,0,0,0,0,0,8,0,4,12,0,0,8,0,4,0,0,12,0,0,0,0,0,0,16,0,8,0,0,0,8,0,0,6,0,0

%N Theta series of Kagome net with respect to an atom.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

%H Antti Karttunen, <a href="/A217220/b217220.txt">Table of n, a(n) for n = 0..65537</a>

%H N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), pp. 1653-1657.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Phi_0(q)-phi_1(q^4) in the notation of SPLAG, Chapter 4.

%F a(n) = 4 * b(n) where b() is multiplicative with b(2^e) = (1+(-1)^e)*3/4, b(3^e) = 1, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p == 1 (mod 6). - _Michael Somos_, Feb 01 2017

%F Expansion of (2 * a(q) + a(q^4)) / 3 in powers of q where a() is a cubic AGM function. - _Michael Somos_, Feb 01 2017

%F Expansion of phi(q) * phi(q^3) + 2 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Feb 01 2017

%e G.f. = 1 + 4*q + 4*q^3 + 6*q^4 + 8*q^7 + 4*q^9 + 6*q^12 + 8*q^13 + ...

%p S:= series(JacobiTheta3(0,q)*JacobiTheta3(0,q^3)+JacobiTheta2(0,q)*JacobiTheta2(0,q^3)/2, q, 103):

%p seq(coeff(S,q,n),n=0..102); # _Robert Israel_, Nov 20 2017

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* _Michael Somos_, Feb 01 2017 *)

%o (PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, kronecker( d, 3)) + if( n%4==0, 2 * sumdiv( n/4, d, kronecker( d, 3))))}; /* _Michael Somos_, Feb 01 2017 */

%o (Magma) A := Basis( ModularForms( Gamma1(12), 1), 80); A[1] + 4*A[2] + 4*A[4] + 6*A[5]; /* _Michael Somos_, Feb 01 2017 */

%Y Cf. A217221.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Oct 05 2012