The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303559 G.f. A(x) satisfies: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^(n+1))^n for n>1. 2
 1, 1, 4, 27, 236, 2405, 27322, 341359, 4714996, 72864319, 1265303986, 24429044332, 514629734620, 11658131151120, 282702829140564, 7356326626391035, 205875441726381570, 6178380749014085048, 197325821666554796930, 6653680184371365887508, 235653641615055767872038, 8749040544777960685341423 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to: 0 = [x^(n-1)] (x*F(x))' / (1 + x*F(x)^2)^n for n>1 holds when F(x) = 1 + x*F(x)^2 is a g.f. of the Catalan numbers (A000108). Compare to: 0 = [x^(n-1)] (x*G(x))' / (1 + x*G(x)^k)^n for n>1 holds when G(x) = 1 + x*G(x)^k and k is fixed; this sequence explores the case where k varies with n. Related identity: 0 = [x^(n-1)] (x*F(x))' / F(x)^n for n>1 holds when F(0) = 1. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 27*x^3 + 236*x^4 + 2405*x^5 + 27322*x^6 + 341359*x^7 + 4714996*x^8 + 72864319*x^9 + 1265303986*x^10 + ... such that 0 = [x^(n-1)] (A(x) + x*A'(x)) / (1 + x*A(x)^(n+1))^n for n>1. RELATED SERIES. (x*A(x))' = 1 + 2*x + 12*x^2 + 108*x^3 + 1180*x^4 + 14430*x^5 + 191254*x^6 + 2730872*x^7 + 42434964*x^8 + ... A'(x)/A(x) = 1 + 7*x + 70*x^2 + 819*x^3 + 10501*x^4 + 144208*x^5 + 2120511*x^6 + 33844851*x^7 + 596093380*x^8 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k in (x*A(x))'/(1 + x*A(x)^(n+1))^n begins: n=1: [1, 1, 9, 88, 1003, 12566, 169292, 2449518, 38542987, ...]; n=2: [1, 0, 5, 62, 770, 10114, 140612, 2085848, 33572317, ...]; n=3: [1, -1, 0, 32, 503, 7272, 107140, 1660276, 27755613, ...]; n=4: [1, -2, -6, 0, 233, 4344, 71912, 1205724, 21476038, ...]; n=5: [1, -3, -13, -32, 0, 1744, 38977, 765450, 15238101, ...]; n=6: [1, -4, -21, -62, -147, 0, 13205, 388412, 9601263, ...]; n=7: [1, -5, -30, -88, -150, -242, 0, 121754, 5068535, ...]; n=8: [1, -6, -40, -108, 58, 1786, 4918, 0, 1922345, ...]; n=9: [1, -7, -51, -120, 553, 6978, 33190, 30542, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^(n+1))^n for n>1. RELATED TABLE. The table of coefficients of x^k in (x*A(x))' / A(x)^n begins: n=1: [1, 1, 7, 70, 819, 10501, 144208, 2120511, 33844851, ...]; n=2: [1, 0, 3, 40, 531, 7324, 105650, 1613214, 26592811, ...]; n=3: [1, -1, 0, 17, 305, 4782, 74272, 1193530, 20486577, ...]; n=4: [1, -2, -2, 0, 131, 2772, 48936, 848064, 15359375, ...]; n=5: [1, -3, -3, -12, 0, 1204, 28657, 565245, 11066901, ...]; n=6: [1, -4, -3, -20, -96, 0, 12587, 335114, 7484601, ...]; n=7: [1, -5, -2, -25, -164, -907, 0, 149131, 4505231, ...]; n=8: [1, -6, 0, -28, -210, -1574, -9722, 0, 2036675, ...]; n=9: [1, -7, 3, -30, -239, -2049, -17102, -118489, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating the identity: 0 = [x^(n-1)] (x*A(x))' / A(x)^n for n>1 holds since A(0) = 1. PROG (PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); m=#A; A[m] = -Vec( (Ser(A) + x*Ser(A)')/(1 + x*Ser(A)^(m+1))^m/m )[m]); A[n+1]} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A303558. Sequence in context: A328978 A185655 A181146 * A161120 A183430 A212559 Adjacent sequences: A303556 A303557 A303558 * A303560 A303561 A303562 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 06:14 EDT 2024. Contains 372760 sequences. (Running on oeis4.)