login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303559
G.f. A(x) satisfies: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^(n+1))^n for n>1.
2
1, 1, 4, 27, 236, 2405, 27322, 341359, 4714996, 72864319, 1265303986, 24429044332, 514629734620, 11658131151120, 282702829140564, 7356326626391035, 205875441726381570, 6178380749014085048, 197325821666554796930, 6653680184371365887508, 235653641615055767872038, 8749040544777960685341423
OFFSET
0,3
COMMENTS
Compare to: 0 = [x^(n-1)] (x*F(x))' / (1 + x*F(x)^2)^n for n>1 holds when F(x) = 1 + x*F(x)^2 is a g.f. of the Catalan numbers (A000108).
Compare to: 0 = [x^(n-1)] (x*G(x))' / (1 + x*G(x)^k)^n for n>1 holds when G(x) = 1 + x*G(x)^k and k is fixed; this sequence explores the case where k varies with n.
Related identity: 0 = [x^(n-1)] (x*F(x))' / F(x)^n for n>1 holds when F(0) = 1.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 27*x^3 + 236*x^4 + 2405*x^5 + 27322*x^6 + 341359*x^7 + 4714996*x^8 + 72864319*x^9 + 1265303986*x^10 + ...
such that 0 = [x^(n-1)] (A(x) + x*A'(x)) / (1 + x*A(x)^(n+1))^n for n>1.
RELATED SERIES.
(x*A(x))' = 1 + 2*x + 12*x^2 + 108*x^3 + 1180*x^4 + 14430*x^5 + 191254*x^6 + 2730872*x^7 + 42434964*x^8 + ...
A'(x)/A(x) = 1 + 7*x + 70*x^2 + 819*x^3 + 10501*x^4 + 144208*x^5 + 2120511*x^6 + 33844851*x^7 + 596093380*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (x*A(x))'/(1 + x*A(x)^(n+1))^n begins:
n=1: [1, 1, 9, 88, 1003, 12566, 169292, 2449518, 38542987, ...];
n=2: [1, 0, 5, 62, 770, 10114, 140612, 2085848, 33572317, ...];
n=3: [1, -1, 0, 32, 503, 7272, 107140, 1660276, 27755613, ...];
n=4: [1, -2, -6, 0, 233, 4344, 71912, 1205724, 21476038, ...];
n=5: [1, -3, -13, -32, 0, 1744, 38977, 765450, 15238101, ...];
n=6: [1, -4, -21, -62, -147, 0, 13205, 388412, 9601263, ...];
n=7: [1, -5, -30, -88, -150, -242, 0, 121754, 5068535, ...];
n=8: [1, -6, -40, -108, 58, 1786, 4918, 0, 1922345, ...];
n=9: [1, -7, -51, -120, 553, 6978, 33190, 30542, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^(n+1))^n for n>1.
RELATED TABLE.
The table of coefficients of x^k in (x*A(x))' / A(x)^n begins:
n=1: [1, 1, 7, 70, 819, 10501, 144208, 2120511, 33844851, ...];
n=2: [1, 0, 3, 40, 531, 7324, 105650, 1613214, 26592811, ...];
n=3: [1, -1, 0, 17, 305, 4782, 74272, 1193530, 20486577, ...];
n=4: [1, -2, -2, 0, 131, 2772, 48936, 848064, 15359375, ...];
n=5: [1, -3, -3, -12, 0, 1204, 28657, 565245, 11066901, ...];
n=6: [1, -4, -3, -20, -96, 0, 12587, 335114, 7484601, ...];
n=7: [1, -5, -2, -25, -164, -907, 0, 149131, 4505231, ...];
n=8: [1, -6, 0, -28, -210, -1574, -9722, 0, 2036675, ...];
n=9: [1, -7, 3, -30, -239, -2049, -17102, -118489, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating the identity: 0 = [x^(n-1)] (x*A(x))' / A(x)^n for n>1 holds since A(0) = 1.
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); m=#A; A[m] = -Vec( (Ser(A) + x*Ser(A)')/(1 + x*Ser(A)^(m+1))^m/m )[m]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A303558.
Sequence in context: A379192 A185655 A181146 * A161120 A183430 A212559
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 27 2018
STATUS
approved