The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185655 a(n) = Sum_{k=0..n} binomial(n+k, k)*binomial(n+k+1, k+1)/(n+1). 1
 1, 4, 27, 236, 2375, 26090, 304241, 3704860, 46622655, 602035556, 7937288062, 106451074614, 1448267147717, 19944962832826, 277565209168861, 3898075200816892, 55182857681572655, 786731161113510584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The function B(x,r) = x*Sum_{n>=0} b(n,r)*x^n, where b(n,r) = Sum_{k=0..n} binomial(n+k, k)*binomial(n+k+1, r*k+1)/(n+1), satisfies B(x/(1+x) - x^r, r) = x for all positive integer r except at r=1; B(x,1)/x is the generating function of this sequence. LINKS G. C. Greubel, Table of n, a(n) for n = 0..830 FORMULA Recurrence: 2*(n+1)^2*(2*n + 1)*(3*n - 2)*(7*n - 2)*a(n) = (1365*n^5 - 607*n^4 - 821*n^3 + 411*n^2 + 80*n - 44)*a(n-1) - 4*(n-2)*(2*n - 1)^2*(3*n + 1)*(7*n + 5)*a(n-2). - Vaclav Kotesovec, Nov 27 2017 a(n) ~ 2^(4*n+3) / (3*Pi*n^2). - Vaclav Kotesovec, Nov 27 2017 EXAMPLE G.f.: A(x) = 1 + 4*x + 27*x^2 + 236*x^3 + 2375*x^4 + 26090*x^5 +... Let G(x*A(x)) = x, then the series reversion of x*A(x) begins: G(x) = x - 4*x^2 + 5*x^3 - 16*x^4 - 12*x^5 - 218*x^6 - 1197*x^7 - 8974*x^8 - 65582*x^9 - 503614*x^10 - 3956461*x^11 - ... Does G(x) satisfy a nice functional equation? MATHEMATICA Table[Sum[Binomial[n + k, k]*Binomial[n + k + 1, k + 1]/(n + 1), {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Jul 09 2017 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n+k, k)*binomial(n+k+1, k+1))/(n+1)} CROSSREFS Sequence in context: A276029 A160883 A328978 * A181146 A303559 A161120 Adjacent sequences:  A185652 A185653 A185654 * A185656 A185657 A185658 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 09:15 EST 2021. Contains 349574 sequences. (Running on oeis4.)