login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303558
G.f. A(x) satisfies: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^n)^n for n>1.
2
1, 1, 3, 15, 93, 620, 4046, 24077, 138709, 1448110, 32196907, 697062429, 11628586799, 140701747704, 1213958140794, 21010393015426, 1219119257782371, 56771570322826701, 1958328935823726853, 55307040650361330286, 1429761229872782798864, 40335112020127634181504, 1453061157501054116976825, 63044483568580391515906296
OFFSET
0,3
COMMENTS
Compare to: 0 = [x^(n-1)] (x*F(x))' / (1 + x*F(x)^2)^n for n>1 holds when F(x) = 1 + x*F(x)^2 is a g.f. of the Catalan numbers (A000108).
Compare to: 0 = [x^(n-1)] (x*G(x))' / (1 + x*G(x)^k)^n for n>1 holds when G(x) = 1 + x*G(x)^k and k is fixed; this sequence explores the case where k varies directly with n.
Related identity: 0 = [x^(n-1)] (x*F(x))' / F(x)^n for n>1 holds when F(0) = 1.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 93*x^4 + 620*x^5 + 4046*x^6 + 24077*x^7 + 138709*x^8 + 1448110*x^9 + 32196907*x^10 + ...
such that 0 = [x^(n-1)] (A(x) + x*A'(x)) / (1 + x*A(x)^n)^n for n>1.
RELATED SERIES.
(x*A(x))' = 1 + 2*x + 9*x^2 + 60*x^3 + 465*x^4 + 3720*x^5 + 28322*x^6 + 192616*x^7 + 1248381*x^8 + ...
A'(x)/A(x) = 1 + 5*x + 37*x^2 + 305*x^3 + 2516*x^4 + 19205*x^5 + 126624*x^6 + 792081*x^7 + 10741078*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (x*A(x))'/(1 + x*A(x)^n)^n begins:
n=1: [1, 1, 7, 49, 391, 3151, 23815, 158425, 1013803, ...];
n=2: [1, 0, 4, 34, 287, 2354, 17532, 110690, 681487, ...];
n=3: [1, -1, 0, 17, 169, 1431, 10215, 55203, 297810, ...];
n=4: [1, -2, -5, 0, 62, 554, 3111, 1872, -56195, 5924106, ...];
n=5: [1, -3, -11, -15, 0, -31, -2145, -36993, -281119, 4826695, ...];
n=6: [1, -4, -18, -26, 26, 0, -3742, -50288, -295155, 5468804, ...];
n=7: [1, -5, -26, -31, 192, 1053, 0, -34031, -94648, 7795307, ...];
n=8: [1, -6, -35, -28, 559, 3620, 10228, 0, 155958, 10425666, ...];
n=9: [1, -7, -45, -15, 1197, 8283, 27059, 12493, 0, 9907761, ...];
n=10: [1, -8, -56, 10, 2185, 15718, 48988, -78722, -1474424, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that: 0 = [x^(n-1)] (x*A(x))' / (1 + x*A(x)^n)^n for n>1.
RELATED TABLE.
The table of coefficients of x^k in (x*A(x))' / A(x)^n begins:
n=1: [1, 1, 5, 37, 305, 2516, 19205, 126624, 792081, 10741078, ...];
n=2: [1, 0, 2, 20, 186, 1620, 12495, 79302, 474495, 7998088, ...];
n=3: [1, -1, 0, 8, 100, 969, 7680, 46440, 261588, 5988094, ...];
n=4: [1, -2, -1, 0, 40, 510, 4337, 24608, 126090, 4504280, ...];
n=5: [1, -3, -1, -5, 0, 199, 2120, 11037, 46376, 3386810, ...];
n=6: [1, -4, 0, -8, -25, 0, 749, 3514, 5499, 2514128, ...];
n=7: [1, -5, 2, -10, -39, -116, 0, 290, -9640, 1795607, ...];
n=8: [1, -6, 5, -12, -45, -172, -304, 0, -9000, 1165374, ...];
n=9: [1, -7, 9, -15, -45, -186, -301, 1594, 0, 577155, ...];
n=10: [1, -8, 14, -20, -40, -172, -97, 4278, 11976, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating the identity: 0 = [x^(n-1)] (x*A(x))' / A(x)^n for n>1 holds since A(0) = 1.
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=1, n, A = concat(A, 0); m=#A; A[m] = -Vec( (Ser(A) + x*Ser(A)')/(1 + x*Ser(A)^m)^m/m )[m]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A303559.
Sequence in context: A323696 A231657 A361881 * A193661 A192296 A372374
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 26 2018
STATUS
approved