login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303364
Number of strict integer partitions of n with pairwise indivisible and squarefree parts.
4
1, 1, 1, 0, 2, 1, 2, 1, 1, 3, 2, 2, 4, 3, 3, 4, 6, 5, 5, 6, 7, 8, 9, 10, 10, 11, 11, 14, 14, 17, 16, 18, 19, 23, 24, 27, 29, 30, 33, 36, 41, 41, 42, 46, 51, 56, 60, 66, 67, 71, 81, 86, 93, 96, 101, 110, 121, 129, 135, 144, 153, 159, 173, 192, 204, 207, 224
OFFSET
1,5
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..700 (terms 0..400 from Andrew Howroyd)
EXAMPLE
The a(23) = 9 strict integer partitions are (23), (13,10), (17,6), (21,2), (10,7,6), (11,7,5), (13,7,3), (11,7,3,2), (13,5,3,2).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&And@@SquareFreeQ/@#&&Select[Tuples[#, 2], UnsameQ@@#&&Divisible@@#&]==={}&]], {n, 60}]
PROG
(PARI)
lista(nn)={local(Cache=Map());
my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));
my(c(n, m, b)=
if(n==0, 1,
while(m>n || bittest(b, 0), m--; b>>=1);
my(hk=[n, m, b], z);
if(!mapisdefined(Cache, hk, &z),
z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
mapput(Cache, hk, z)); z));
my(a(n)=c(n, n, sum(i=1, n, if(!issquarefree(i), 2^(n-i)))));
for(n=1, nn, print1(a(n), ", "))
} \\ Andrew Howroyd, Nov 02 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 22 2018
STATUS
approved