login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strict integer partitions of n with pairwise indivisible and squarefree parts.
4

%I #16 Dec 29 2020 03:19:48

%S 1,1,1,0,2,1,2,1,1,3,2,2,4,3,3,4,6,5,5,6,7,8,9,10,10,11,11,14,14,17,

%T 16,18,19,23,24,27,29,30,33,36,41,41,42,46,51,56,60,66,67,71,81,86,93,

%U 96,101,110,121,129,135,144,153,159,173,192,204,207,224

%N Number of strict integer partitions of n with pairwise indivisible and squarefree parts.

%H Fausto A. C. Cariboni, <a href="/A303364/b303364.txt">Table of n, a(n) for n = 1..700</a> (terms 0..400 from Andrew Howroyd)

%e The a(23) = 9 strict integer partitions are (23), (13,10), (17,6), (21,2), (10,7,6), (11,7,5), (13,7,3), (11,7,3,2), (13,5,3,2).

%t Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@SquareFreeQ/@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}]

%o (PARI)

%o lista(nn)={local(Cache=Map());

%o my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d))));

%o my(c(n, m, b)=

%o if(n==0, 1,

%o while(m>n || bittest(b,0), m--; b>>=1);

%o my(hk=[n, m, b], z);

%o if(!mapisdefined(Cache, hk, &z),

%o z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);

%o mapput(Cache, hk, z)); z));

%o my(a(n)=c(n, n, sum(i=1, n, if(!issquarefree(i), 2^(n-i)))));

%o for(n=1, nn, print1(a(n), ", "))

%o } \\ _Andrew Howroyd_, Nov 02 2019

%Y Cf. A000009, A000837, A003238, A005117, A006126, A051424, A073576, A285572, A285573, A293606, A293993, A303362, A303365.

%K nonn

%O 1,5

%A _Gus Wiseman_, Apr 22 2018