login
A301740
The number of trees with 5 nodes labeled by positive integers, where each tree's label sum is n.
2
3, 9, 24, 50, 96, 164, 267, 408, 603, 856, 1186, 1598, 2115, 2742, 3505, 4411, 5489, 6746, 8215, 9904, 11849, 14059, 16573, 19401, 22586, 26138, 30103, 34493, 39357, 44707, 50596, 57037, 64086, 71757, 80109, 89157, 98964, 109545, 120966, 133244, 146448, 160595, 175758, 191955
OFFSET
5,1
COMMENTS
Computed by the sum over the A000055(5)=3 shapes of the trees: the linear graph of the n-Pentane, the branched 2-Methyl-Butane, and the star graph of (1,1)-Bimethyl-Propane.
FORMULA
a(n) = A005994(n-5)+A001752(n-5)+A002621(n-5).
EXAMPLE
a(5)=3 because there is a linear tree with all labels equal 1, the branched tree with all labels equal to 1, and the star tree with all labels equal 1.
MAPLE
-x^5*(3+3*x+6*x^2+5*x^3+5*x^4+2*x^5+x^6)/(1+x^2)/(1+x+x^2)/(1+x)^2/(x-1)^5 ;
taylor(%, x=0, 80) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A002620 (labeled trees with 3 nodes), A301739 (labeled trees with 4 nodes).
Sequence in context: A120012 A352640 A029530 * A227018 A244504 A085739
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 26 2018
STATUS
approved