login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244504
Number of distinct lines passing through at least two points in a triangular grid of side n.
2
3, 9, 24, 51, 102, 177, 294, 459, 690, 987, 1380, 1875, 2508, 3279, 4212, 5319, 6648, 8199, 10026, 12141, 14580, 17343, 20496, 24051, 28068, 32547, 37542, 43071, 49218, 55983, 63456, 71661, 80658, 90447, 101100, 112635, 125160, 138675, 153252, 168915, 185784
OFFSET
2,1
LINKS
FORMULA
a(n) = 3*sum(j = 1..n-1, euler_phi(j)*(g(n-j)-g(n-2*j))), where g(i) = i*(i+1)/2 if i > 0, otherwise 0, after Jon E. Schoenfield.
MATHEMATICA
g[i_]:=If[i>0, i*(i+1)/2, 0]; Table[3*Sum[EulerPhi[j]*(g[n-j]-g[n-2*j]), {j, 1, n-1}], {n, 2, 50}] (* Vaclav Kotesovec, Sep 04 2014 after Jon E. Schoenfield *)
PROG
(PARI) g(j) = if (j > 0, j*(j+1)/2, 0);
a(n) = 3*sum(j = 1, n-1, eulerphi(j)*(g(n-j)-g(n-2*j))); \\ Michel Marcus, Sep 04 2014
CROSSREFS
Cf. A234248.
Sequence in context: A029530 A301740 A227018 * A085739 A245762 A291706
KEYWORD
nonn
AUTHOR
Heinrich Ludwig, Sep 04 2014
STATUS
approved