login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244501
Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).
4
1, 8, 55, 248, 820, 2212, 5163, 10815, 20833, 37540, 64067, 104518, 164150, 249568, 368935, 532197, 751323, 1040560, 1416703, 1899380, 2511352, 3278828, 4231795, 5404363, 6835125, 8567532, 10650283, 13137730, 16090298, 19574920, 23665487, 28443313, 33997615
OFFSET
2,2
COMMENTS
sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.
FORMULA
a(n) = 1/48*n^6 + 1/16*n^5 - 13/16*n^4 + 61/48*n^3 + 247/24*n^2 - 293/6*n + 6 for n >= 3.
G.f.: -x^2*(6*x^7 - 17*x^6 + 14*x^5 - 6*x^4 - 4*x^3 + 20*x^2 + x + 1) / (x-1)^7. - Colin Barker, Jun 29 2014
MATHEMATICA
CoefficientList[Series[-(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1) / (x-1)^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 03 2014 after Colin Barker *)
PROG
(PARI) Vec(-x^2*(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jun 29 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Jun 29 2014
STATUS
approved