login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244499
Decimal expansion of e/gamma, the ratio of Euler number and the Euler-Mascheroni constant.
2
4, 7, 0, 9, 3, 0, 0, 1, 6, 9, 3, 2, 7, 1, 0, 3, 3, 3, 0, 7, 4, 4, 1, 4, 3, 2, 1, 7, 7, 5, 4, 7, 0, 0, 4, 6, 3, 5, 1, 6, 6, 1, 6, 7, 8, 3, 2, 9, 0, 6, 4, 7, 1, 9, 6, 0, 9, 7, 8, 7, 0, 3, 8, 7, 1, 4, 8, 8, 1, 8, 3, 6, 1, 2, 4, 9, 5, 8, 1, 1, 6, 3, 1, 3, 8, 8, 5, 4, 8, 8, 1, 9, 2, 3, 6, 0, 7, 2, 0, 3, 0, 1, 7, 5, 7
OFFSET
1,1
REFERENCES
Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.10, page 2.
LINKS
Ovidiu Furdui, Problem 1764, Mathematics Magazine, Vol. 80, No. 1 (2007), pp. 77-78; Euler-Mascheroni meets e, Solution to Problem 1764 by Edward Schmeichel, ibid., Vol. 81, No. 1 (2008), p. 67.
FORMULA
Equals lim_{n->oo} (g(n)^gamma/gamma^g(n))^(2*n), where g(n) = H(n) - log(n) and H(n) = A001008(n)/A002805(n) is the n-th harmonic number (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022
EXAMPLE
4.709300169327103330744143217754700463516616783290647196...
MATHEMATICA
RealDigits[E/EulerGamma, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
PROG
(PARI) exp(1)/Euler
(Magma) R:= RealField(100); Exp(1)/EulerGamma(R); // G. C. Greubel, Aug 30 2018
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Jun 29 2014
STATUS
approved