login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).
4

%I #17 Oct 11 2017 05:11:17

%S 1,8,55,248,820,2212,5163,10815,20833,37540,64067,104518,164150,

%T 249568,368935,532197,751323,1040560,1416703,1899380,2511352,3278828,

%U 4231795,5404363,6835125,8567532,10650283,13137730,16090298,19574920,23665487,28443313,33997615

%N Number of ways to place 3 points on an n X n X n triangular grid so that no pair of them has distance sqrt(3).

%C sqrt(3) is the second closest (Euclidean) distance for a pair of points in a triangular grid. For illustration see A244500.

%H Heinrich Ludwig, <a href="/A244501/b244501.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = 1/48*n^6 + 1/16*n^5 - 13/16*n^4 + 61/48*n^3 + 247/24*n^2 - 293/6*n + 6 for n >= 3.

%F G.f.: -x^2*(6*x^7 - 17*x^6 + 14*x^5 - 6*x^4 - 4*x^3 + 20*x^2 + x + 1) / (x-1)^7. - _Colin Barker_, Jun 29 2014

%t CoefficientList[Series[-(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1) / (x-1)^7, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jul 03 2014 after _Colin Barker_ *)

%o (PARI) Vec(-x^2*(6*x^7-17*x^6+14*x^5-6*x^4-4*x^3+20*x^2+x+1)/(x-1)^7 + O(x^100)) \\ _Colin Barker_, Jun 29 2014

%Y Cf. A086274, A244500, A244502, A244503.

%K nonn,easy

%O 2,2

%A _Heinrich Ludwig_, Jun 29 2014