login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301615
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 34, 62, 34, 3, 5, 111, 367, 367, 111, 5, 8, 361, 2131, 3816, 2131, 361, 8, 13, 1172, 12467, 40085, 40085, 12467, 1172, 13, 21, 3809, 72758, 421025, 758338, 421025, 72758, 3809, 21, 34, 12377, 425003, 4422826, 14345706, 14345706
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1.........2...........3..............5................8
..1.....3......11........34.........111............361.............1172
..1....11......62.......367........2131..........12467............72758
..2....34.....367......3816.......40085.........421025..........4422826
..3...111....2131.....40085......758338.......14345706........271301458
..5...361...12467....421025....14345706......488491106......16632517333
..8..1172...72758...4422826...271301458....16632517333....1019565752074
.13..3809..425003..46459647..5131197358...566336198475...62500458737127
.21.12377.2481842.488047397.97045266159.19283659583317.3831336753439723
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 10]
k=4: [order 20] for n>21
k=5: [order 68] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..0..0. .0..0..0..1. .0..1..1..1. .0..1..0..0
..1..1..1..1. .0..1..0..0. .0..0..1..1. .0..1..1..1. .0..1..0..1
..0..1..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..0. .1..1..0..1
..0..1..0..1. .0..1..1..0. .1..1..1..0. .1..1..1..0. .1..0..0..1
..1..1..0..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A180762.
Sequence in context: A316648 A316176 A317458 * A180771 A300546 A300973
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 24 2018
STATUS
approved