

A301617


Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.


1



1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,1).


FORMULA

n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1).  David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1  x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n1) + a(n4)  a(n5) for n>5.
(End)


EXAMPLE

1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.


MAPLE

seq(seq(i+90*j, i=[1, 19, 37, 73]), j=0..30); # Robert Israel, Mar 25 2018


PROG

(PARI) a(n) = 1 + 18 * (n  1 + n\4) \\ David A. Corneth, Mar 24 2018
(PARI) Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1  x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018


CROSSREFS

Cf. A177704, A045572.
Intersection of A007775 and A017173.
Sequence in context: A039321 A043144 A043924 * A211821 A061237 A158293
Adjacent sequences: A301614 A301615 A301616 * A301618 A301619 A301620


KEYWORD

nonn,base,easy


AUTHOR

Gary Croft, Mar 24 2018


EXTENSIONS

The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018


STATUS

approved



