login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301617
Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.
1
1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
OFFSET
1,2
COMMENTS
Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.
FORMULA
n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)
EXAMPLE
1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.
MAPLE
seq(seq(i+90*j, i=[1, 19, 37, 73]), j=0..30); # Robert Israel, Mar 25 2018
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 19, 37, 73, 91}, 50] (* Harvey P. Dale, Dec 14 2019 *)
PROG
(PARI) a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018
(PARI) Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018
CROSSREFS
Intersection of A007775 and A017173.
Sequence in context: A039321 A043144 A043924 * A211821 A061237 A158293
KEYWORD
nonn,base,easy
AUTHOR
Gary Croft, Mar 24 2018
EXTENSIONS
The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018
STATUS
approved