The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301617 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1. 1
 1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA n == {1, 19, 37, 73} mod 90. a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018 From Colin Barker, Mar 24 2018: (Start) G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)). a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End) EXAMPLE 1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109. MAPLE seq(seq(i+90*j, i=[1, 19, 37, 73]), j=0..30); # Robert Israel, Mar 25 2018 MATHEMATICA LinearRecurrence[{1, 0, 0, 1, -1}, {1, 19, 37, 73, 91}, 50] (* Harvey P. Dale, Dec 14 2019 *) PROG (PARI) a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018 (PARI) Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018 CROSSREFS Cf. A177704, A045572. Intersection of A007775 and A017173. Sequence in context: A039321 A043144 A043924 * A211821 A061237 A158293 Adjacent sequences:  A301614 A301615 A301616 * A301618 A301619 A301620 KEYWORD nonn,base,easy AUTHOR Gary Croft, Mar 24 2018 EXTENSIONS The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 30 20:11 EDT 2020. Contains 338090 sequences. (Running on oeis4.)