login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.
1

%I #28 Dec 14 2019 16:38:12

%S 1,19,37,73,91,109,127,163,181,199,217,253,271,289,307,343,361,379,

%T 397,433,451,469,487,523,541,559,577,613,631,649,667,703,721,739,757,

%U 793,811,829,847,883,901,919,937,973,991,1009,1027,1063,1081,1099

%N Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.

%C Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.

%H Colin Barker, <a href="/A301617/b301617.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F n == {1, 19, 37, 73} mod 90.

%F a(n + 1) = a(n) + 18 * A177704(n + 1). - _David A. Corneth_, Mar 24 2018

%F From _Colin Barker_, Mar 24 2018: (Start)

%F G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.

%F (End)

%e 1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.

%p seq(seq(i+90*j,i=[1,19,37,73]),j=0..30); # _Robert Israel_, Mar 25 2018

%t LinearRecurrence[{1,0,0,1,-1},{1,19,37,73,91},50] (* _Harvey P. Dale_, Dec 14 2019 *)

%o (PARI) a(n) = 1 + 18 * (n - 1 + n\4) \\ _David A. Corneth_, Mar 24 2018

%o (PARI) Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ _Colin Barker_, Mar 24 2018

%Y Cf. A177704, A045572.

%Y Intersection of A007775 and A017173.

%K nonn,base,easy

%O 1,2

%A _Gary Croft_, Mar 24 2018

%E The missing term 1081 added to the sequence by _Colin Barker_, Mar 24 2018