login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316176
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 10, 16, 10, 3, 5, 51, 34, 34, 51, 5, 8, 165, 113, 72, 113, 165, 8, 13, 306, 275, 331, 331, 275, 306, 13, 21, 993, 604, 1425, 3087, 1425, 604, 993, 21, 34, 2867, 1804, 5297, 16382, 16382, 5297, 1804, 2867, 34, 55, 6818, 4683, 18573, 66575
OFFSET
1,5
COMMENTS
Table starts
..0....1....1.....2.......3.........5..........8...........13............21
..1....3...11....10......51.......165........306..........993..........2867
..1...11...16....34.....113.......275........604.........1804..........4683
..2...10...34....72.....331......1425.......5297........18573.........84658
..3...51..113...331....3087.....16382......66575.......500251.......3416740
..5..165..275..1425...16382....139293.....976178.....10070845.....106916450
..8..306..604..5297...66575....976178...12236682....164577403....2930093529
.13..993.1804.18573..500251..10070845..164577403...4139589568..113829450853
.21.2867.4683.84658.3416740.106916450.2930093529.113829450853.4957413596069
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6
k=3: [order 18] for n>20
k=4: [order 64] for n>66
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..1. .0..1..1..0. .0..0..1..0. .0..0..0..0
..0..0..1..0. .0..1..0..1. .0..1..1..0. .1..0..0..0. .1..1..0..1
..1..0..1..0. .1..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..0
..1..0..0..0. .1..1..1..0. .0..1..1..0. .0..0..1..0. .0..0..0..0
..0..0..1..0. .1..0..1..1. .0..1..1..1. .1..1..1..1. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304052.
Sequence in context: A316455 A305015 A316648 * A317458 A301615 A180771
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 25 2018
STATUS
approved