login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316648
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 10, 15, 10, 3, 5, 51, 33, 33, 51, 5, 8, 165, 117, 42, 117, 165, 8, 13, 306, 247, 277, 277, 247, 306, 13, 21, 993, 599, 954, 3988, 954, 599, 993, 21, 34, 2867, 1757, 2432, 13869, 13869, 2432, 1757, 2867, 34, 55, 6818, 4241, 10541, 54941
OFFSET
1,5
COMMENTS
Table starts
..0....1....1.....2.......3.......5.........8.........13..........21
..1....3...11....10......51.....165.......306........993........2867
..1...11...15....33.....117.....247.......599.......1757........4241
..2...10...33....42.....277.....954......2432......10541.......39013
..3...51..117...277....3988...13869.....54941.....427096.....1946889
..5..165..247...954...13869...43604....228056....1976020.....9093873
..8..306..599..2432...54941..228056...1396674...17049299...106043303
.13..993.1757.10541..427096.1976020..17049299..331807728..2594184863
.21.2867.4241.39013.1946889.9093873.106043303.2594184863.22368384180
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6
k=3: [order 17]
k=4: [order 69] for n>70
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..1..0. .0..0..1..0. .0..1..0..1. .0..1..0..0
..0..1..1..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .1..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..0. .1..1..0..0. .0..0..0..0
..1..0..1..0. .0..1..1..0. .1..0..0..1. .0..1..0..1. .0..0..0..0
..0..0..0..0. .0..1..1..0. .1..0..0..1. .0..1..0..1. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304052.
Sequence in context: A304704 A316455 A305015 * A316176 A317458 A301615
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 09 2018
STATUS
approved