login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301430 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers which are sums of two squares. 12
3, 0, 2, 3, 1, 6, 1, 4, 2, 3, 5, 7, 0, 6, 5, 6, 3, 7, 9, 4, 7, 7, 6, 9, 9, 0, 0, 4, 8, 0, 1, 9, 9, 7, 1, 5, 6, 0, 2, 4, 1, 2, 7, 9, 5, 1, 8, 9, 3, 6, 9, 6, 4, 5, 4, 5, 8, 8, 6, 7, 8, 4, 1, 2, 8, 8, 8, 6, 5, 4, 4, 8, 7, 5, 2, 4, 1, 0, 5, 1, 0, 8, 9, 9, 4, 8, 7, 4, 6, 7, 8, 1, 3, 9, 7, 9, 2, 7, 2, 7, 0, 8, 5, 6, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the decimal expansion of the number alpha such that the number of positive integers <= N which are sums of two squares and are also represented by the quadratic form x^2 + xy + y^2 is asymptotic to alpha*N*(log(N))^(-3/4).

Based on the constants Zeta(m=12,n=5,s=2) = 1.0482019036007..., Zeta(m=12,n=7,s=2) = 1.0262021468... and Zeta(m=12,n=11,s=2) = 1.01177863 ... read from arXiv:1008.2547 we have Product_{p == 5, 7, 11(mod 12)} (1-1/p^2)^(-1/2) = sqrt( Zeta(m=12,n=5,s=2) * Zeta(m=12,n=7,s=2) * Zeta(m=12,n=11,s=2) ) as a factor in the formulas. - R. J. Mathar, Feb 04 2021

LINKS

Table of n, a(n) for n=0..105.

Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019.

Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017 and Acta Arithmetica, online 15 March 2018.

FORMULA

Equals (3^(1/4)/2^(5/4)) * Pi^(1/2) * (log(2 + sqrt(3)))^(1/4) / Gamma(1/4) * Product_{p == 5, 7, 11 (mod 12), p prime} (1 - 1/p^2)^(-1/2).

One can base the definition on p(n) = A167135(n). Setting r(n) = (Product_{k=1..n} p(k)^2) / (Product_{k=1..n} (p(k)^2 - 1)) the rational sequence r(n) starts 4/3, 3/2, 25/16, 1225/768, 29645/18432, ... -> L. Then A301430 = sqrt(L)*M with M = ((arccosh(2)/6)^(1/4)*Gamma(3/4))/(2*sqrt(Pi)). - Peter Luschny, Mar 29 2018

EXAMPLE

0.30231614235706563794776990048019971560241279...

MAPLE

Digits:= 1000: with(numtheory):

B:= evalf(3^(1/4)*Pi^(1/2)*log(2+sqrt(3))^(1/4)/(2^(5/4)*GAMMA(1/4))):

for t to 500 do p:=ithprime(t): if `or`(`or`(`mod`(p, 12) = 5, `mod`(p, 12) = 7), `mod`(p, 12) = 11) then B:= evalf(B/(1-1/p^2)^(1/2)) end if end do: B;

MATHEMATICA

prec := 200; B = N[(Sqrt[Pi] ((3 Log[2 + Sqrt[3]])/2)^(1/4))/(2 Gamma[1/4]), prec];

For[n = 3, n < 50000, n++, p = Prime[n];

If[Mod[p, 12] != 1, B = B / Sqrt[(1 - 1/p) (1 + 1/p)]]]

Print[B] (* Peter Luschny, Mar 23 2018 *)

(* -------------------------------------------------------------------------- *)

S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);

P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];

Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);

$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[(3^(1/4)/2^(5/4)) * Pi^(1/2) * (Log[2 + Sqrt[3]])^(1/4) / Gamma[1/4] * Sqrt[Z[12, 5, 2] * Z[12, 7, 2] * Z[12, 11, 2]], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

CROSSREFS

Cf. A003136, A064533, A167135, A301429, A340552.

Sequence in context: A119493 A224317 A032531 * A328311 A143394 A112455

Adjacent sequences:  A301427 A301428 A301429 * A301431 A301432 A301433

KEYWORD

nonn,cons

AUTHOR

Michel Waldschmidt, Mar 21 2018

EXTENSIONS

Offset corrected by Vaclav Kotesovec, Mar 25 2018

a(6)-a(10) from Peter Luschny, Mar 29 2018

More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020

More digits from Vaclav Kotesovec, Jan 15 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 14:16 EST 2021. Contains 341707 sequences. (Running on oeis4.)