login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301431
Least nonnegative integer k such that (n!)^2 + n + k + 1 is prime.
1
0, 0, 0, 1, 6, 1, 4, 3, 4, 13, 6, 1, 46, 9, 16, 7, 24, 41, 48, 9, 10, 81, 366, 35, 82, 21, 100, 39, 152, 71, 66, 377, 4, 27, 8, 25, 10, 225, 70, 13, 158, 125, 294, 3, 86, 81, 26, 133, 208, 141, 50, 31, 26, 127, 112, 173, 802, 363, 374, 47, 910, 437, 74, 213, 1044, 13, 1962, 41, 160, 169, 296, 29
OFFSET
0,5
COMMENTS
The (n-1) consecutive numbers (n)^2! + 2, ..., (n!)^2 + n (for n >= 2) are not prime powers (cf. A246655).
LINKS
EXAMPLE
a(0)=0 because (0!)^2 + 0 + 0 + 1 = 2 is prime.
a(1)=0 because (1!)^2 + 1 + 0 + 1 = 3 is prime.
a(2)=0 because (2!)^2 + 2 + 0 + 1 = 7 is prime.
a(3)=1 because (3!)^2 + 3 + 1 + 1 = 41 is prime and 40 is not prime.
a(4)=6 because (4!)^2 + 4 + 6 + 1 = 587 is prime and 581, 582, ... , 586 are not prime.
PROG
(PARI) a(n) = apply(x->(nextprime(x)-x), (n!)^2+n+1); \\ Altug Alkan, Mar 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 21 2018
STATUS
approved