login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300905
a(n) = n^sigma(n) mod sigma(n)^n.
1
0, 8, 17, 1978, 73, 0, 1570497, 1009588832, 7390478182, 1391503283200, 166394893969, 151448237549551616, 762517292682713, 18685202394240778240, 814227337406354049, 187036938412352867328077, 947615093635545799201, 2095989269871299377743863001
OFFSET
1,2
COMMENTS
sigma(n) = the sum of the divisors of n (A000203).
n^sigma(n) > sigma(n)^n for all n > 2.
FORMULA
a(n) = A100879(n) mod A217872(n).
a(n) = 0 for numbers n in A300906.
If n is a k-perfect number from A007691, then a(n) = 0 iff k divides n.
EXAMPLE
For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0.
MAPLE
with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n, n=1..20); # Muniru A Asiru, Mar 20 2018
MATHEMATICA
Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* Michael De Vlieger, Mar 16 2018 *)
PROG
(Magma) [n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]]
(PARI) a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ Michel Marcus, Mar 17 2018
(GAP) List([1..20], n->PowerModInt(n, Sigma(n), Sigma(n)^n))); # Muniru A Asiru, Mar 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 14 2018
STATUS
approved