OFFSET
1,2
COMMENTS
sigma(n) = the sum of the divisors of n (A000203).
n^sigma(n) > sigma(n)^n for all n > 2.
FORMULA
EXAMPLE
For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0.
MAPLE
with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n, n=1..20); # Muniru A Asiru, Mar 20 2018
MATHEMATICA
Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* Michael De Vlieger, Mar 16 2018 *)
PROG
(Magma) [n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]]
(PARI) a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ Michel Marcus, Mar 17 2018
(GAP) List([1..20], n->PowerModInt(n, Sigma(n), Sigma(n)^n))); # Muniru A Asiru, Mar 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 14 2018
STATUS
approved