login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^sigma(n) mod sigma(n)^n.
1

%I #18 Sep 08 2022 08:46:20

%S 0,8,17,1978,73,0,1570497,1009588832,7390478182,1391503283200,

%T 166394893969,151448237549551616,762517292682713,18685202394240778240,

%U 814227337406354049,187036938412352867328077,947615093635545799201,2095989269871299377743863001

%N a(n) = n^sigma(n) mod sigma(n)^n.

%C sigma(n) = the sum of the divisors of n (A000203).

%C n^sigma(n) > sigma(n)^n for all n > 2.

%F a(n) = A100879(n) mod A217872(n).

%F a(n) = 0 for numbers n in A300906.

%F If n is a k-perfect number from A007691, then a(n) = 0 iff k divides n.

%e For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0.

%p with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n,n=1..20); # _Muniru A Asiru_, Mar 20 2018

%t Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* _Michael De Vlieger_, Mar 16 2018 *)

%o (Magma) [n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]]

%o (PARI) a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ _Michel Marcus_, Mar 17 2018

%o (GAP) List([1..20],n->PowerModInt(n,Sigma(n),Sigma(n)^n))); # _Muniru A Asiru_, Mar 20 2018

%Y Cf. A000203, A007691, A100879, A217872, A300906.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Mar 14 2018