|
|
A299693
|
|
Irregular triangle read by rows in which row n lists the total sum of the divisors of all numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n); or row n is 0 if no such k exists.
|
|
1
|
|
|
1, 3, 4, 7, 6, 0, 12, 8, 15, 13, 18, 12, 0, 28, 14, 24, 0, 24, 31, 18, 39, 20, 0, 42, 32, 36, 24, 0, 60, 31, 42, 40, 0, 56, 30, 0, 72, 32, 63, 48, 54, 0, 48, 91, 38, 60, 56, 0, 90, 42, 0, 96, 44, 84, 0, 78, 72, 48, 0, 124, 57, 93, 72, 98, 54, 0, 120, 72, 0, 120, 80, 90, 60, 0, 168, 62, 96, 0, 104, 127, 84, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..82.
|
|
FORMULA
|
T(n,m) = A000203(A279385(n,m) if A279385(n,m) > 0, otherwise T(n,m) = 0.
|
|
EXAMPLE
|
Triangle begins:
1;
3, 4;
7, 6;
0;
12, 8;
15;
13, 18, 12;
0;
28, 14, 24;
0;
24;
31, 18;
39, 20;
0;
42, 32, 36, 24;
0;
...
|
|
CROSSREFS
|
Nonzero terms give A000203.
Row sums give A299472.
Cf. A259179(n) is the number of positive terms in row n.
Cf. A071562, A196020, A235791, A236104, A237048, A237591, A237593, A240542, A244050, A245092, A276112, A277437, A279286, A279385, A280919, A280223, A282131, A282197, A280295, A281012.
Sequence in context: A285896 A082226 A010613 * A134688 A077650 A244669
Adjacent sequences: A299690 A299691 A299692 * A299694 A299695 A299696
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Omar E. Pol, Feb 19 2018
|
|
STATUS
|
approved
|
|
|
|