

A299539


Numbers n = d_1 d_2 ... d_k (in base 10) such that d_i + d_{k+1i} = 10 for i = 1..k.


0



5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 159, 258, 357, 456, 555, 654, 753, 852, 951, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3197, 3287, 3377, 3467, 3557, 3647, 3737, 3827, 3917, 4196, 4286
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These numbers are also called upsidedown numbers.
All terms belong to A052382 (zeroless numbers).
The central digit of the terms with an odd number of digits is always 5.
This sequence can be partitioned into three sets: { 5 }, A083678 and A093472.
This sequence has similarities with A284811: here d_i + d_{k+1i} = 10, there d_i + d_{k+1i} = 9.


LINKS

Table of n, a(n) for n=1..48.
Robert E. Kennedy and Curtis N. Cooper, Bach, 5465, and UpsideDown Numbers, The College Mathematics Journal, Vol. 18, No. 2 (Mar., 1987), pp. 111115.
Giovanni Resta, Upsidedown numbers, Numbers Aplenty


EXAMPLE

1 + 9 = 10 and 5 + 5 = 10 and 9 + 1 = 10, hence 159 belongs to this sequence.
4 + 2 = 6, hence 42 does not belong to this sequence.


MAPLE

Res:= NULL;
for d from 1 to 3 do
for x from 0 to 9^(d1)1 do
L:= convert(9^(d1)+x, base, 9)[1..d1];
Res:= Res, 5*10^(d1)+add((1+L[i])*10^(2*d1i)+(9L[i])*10^(i1), i=1..d1)
od;
for x from 0 to 9^d1 do
L:= convert(9^d+x, base, 9)[1..d];
Res:= Res, add((1+L[i])*10^(2*di)+(9L[i])*10^(i1), i=1..d)
od
od:
Res; # Robert Israel, Mar 06 2018


PROG

(PARI) is(n) = my (d=digits(n)); Set(d+Vecrev(d))==Set(10)


CROSSREFS

Cf. A052382, A083678, A093472, A284811.
Sequence in context: A218885 A198791 A061388 * A270865 A106072 A106062
Adjacent sequences: A299536 A299537 A299538 * A299540 A299541 A299542


KEYWORD

nonn,base,easy


AUTHOR

Rémy Sigrist, Mar 05 2018


STATUS

approved



