login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332155
Numbers with palindromic Morse code A060109.
0
0, 5, 19, 28, 37, 46, 55, 64, 73, 82, 91, 109, 159, 208, 258, 307, 357, 406, 456, 505, 555, 604, 654, 703, 753, 802, 852, 901, 951, 1009, 1199, 1289, 1379, 1469, 1559, 1649, 1739, 1829, 1919, 2008, 2198, 2288, 2378, 2468, 2558, 2648, 2738, 2828, 2918, 3007
OFFSET
1,2
COMMENTS
Also, numbers whose decimal digits (d[0], ..., d[n]) are such that for all k = 0..n, d[k] + d[n-k] = 0 (mod 10). In particular, if the number of digits n+1 is odd, the middle digit must be either 5 or 0.
The variant A299539 is obtained by excluding terms with a digit 0, i.e., removing all terms that are in A011540, or taking intersection with zeroless numbers A052382. - M. F. Hasler, Nov 25 2020
FORMULA
Sequence is { N | A060109(N) is in A002113 }.
EXAMPLE
The Morse code for digits is "-----" for 0, ".----" for 1, "..---" for 2, ..., "....." for 5, "-...." for 6, ..., "----." for 9. (In A060109 a dot is coded with a digit 1 and a dash with a digit 2.)
We see that 0 and 5 are the only digits with palindromic Morse code, this yields a(1) and a(2).
Two digit numbers must be of the form 10*a + (10-a), with a = 1, ..., 9, in order to have palindromic Morse code. This yields the 9 terms a(3), ..., a(11).
Three-digit terms must have 0 or 5 as middle digit and yield a two-digit term when that middle digit is deleted: this yields the next 18 terms a(12 .. 29).
MATHEMATICA
With[{a = Association@ Array[# -> If[# < 6, PadRight[ConstantArray[1, #], 5, 2], PadRight[ConstantArray[2, # - 5], 5, 1]] &, 10, 0]}, Select[Range[0, 3007], PalindromeQ[Flatten@ Riffle[Map[Lookup[a, #] &, IntegerDigits[#]], 0]] &]] (* Michael De Vlieger, Nov 02 2020 *)
PROG
(PARI) select( is(n)=(Vecrev(n=digits(n))+n)%10==0, [0..3333])
CROSSREFS
Cf. A060109 (Morse code of n), A002113 (palindromes), A004086 (reverse n), A299539 (variant without the terms with digit 0).
Sequence in context: A119238 A218885 A198791 * A366211 A061388 A299539
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Nov 02 2020
STATUS
approved