login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299393
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4, 6 or 8 king-move adjacent elements, with upper left element zero.
5
1, 2, 2, 3, 4, 3, 5, 3, 3, 5, 8, 13, 3, 13, 8, 13, 34, 9, 9, 34, 13, 21, 73, 17, 63, 17, 73, 21, 34, 203, 48, 119, 119, 48, 203, 34, 55, 594, 94, 243, 508, 243, 94, 594, 55, 89, 1443, 234, 1086, 934, 934, 1086, 234, 1443, 89, 144, 4013, 589, 2782, 6254, 2483, 6254, 2782, 589
OFFSET
1,2
COMMENTS
Table starts
..1....2...3....5......8.....13......21.......34........55.........89
..2....4...3...13.....34.....73.....203......594......1443.......4013
..3....3...3....9.....17.....48......94......234.......589.......1333
..5...13...9...63....119....243....1086.....2782......8509......31229
..8...34..17..119....508....934....6254....28963....110704.....623533
.13...73..48..243....934...2483...11240....48286....252027....1266960
.21..203..94.1086...6254..11240..112188...649720...3226442...27461474
.34..594.234.2782..28963..48286..649720..5884463..35846074..446459559
.55.1443.589.8509.110704.252027.3226442.35846074.286590596.3734068803
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6
k=3: [order 17] for n>18
k=4: [order 71] for n>72
EXAMPLE
Some solutions for n=5 k=7
..0..0..0..1..1..1..1. .0..0..0..0..1..1..1. .0..0..0..0..1..0..1
..1..1..0..0..0..1..1. .0..0..1..1..1..0..0. .0..0..1..1..1..1..0
..0..0..0..0..0..0..0. .1..1..1..1..1..1..1. .1..1..1..1..1..1..1
..1..1..0..0..0..1..1. .0..0..1..1..1..0..0. .0..0..1..1..1..1..0
..0..0..0..1..1..1..1. .0..0..0..0..1..1..1. .0..0..0..0..1..0..1
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A297901.
Column 3 is A298315.
Column 4 is A298316.
Sequence in context: A297907 A298501 A298320 * A299194 A300030 A232451
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 09 2018
STATUS
approved