login
A298320
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 1, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 4, 3, 5, 3, 3, 5, 8, 13, 3, 13, 8, 13, 34, 9, 9, 34, 13, 21, 73, 17, 63, 17, 73, 21, 34, 203, 48, 119, 119, 48, 203, 34, 55, 594, 94, 243, 507, 243, 94, 594, 55, 89, 1443, 234, 1086, 934, 934, 1086, 234, 1443, 89, 144, 4013, 589, 2782, 6236, 2466, 6236, 2782, 589
OFFSET
1,2
COMMENTS
Table starts
..1....2...3....5......8.....13......21.......34........55.........89
..2....4...3...13.....34.....73.....203......594......1443.......4013
..3....3...3....9.....17.....48......94......234.......589.......1333
..5...13...9...63....119....243....1086.....2782......8509......31229
..8...34..17..119....507....934....6236....28894....110488.....622009
.13...73..48..243....934...2466...11175....48002....249672....1256472
.21..203..94.1086...6236..11175..111137...644056...3190955...27151266
.34..594.234.2782..28894..48002..644056..5833295..35487422..441894670
.55.1443.589.8509.110488.249672.3190955.35487422.281897638.3673383638
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2).
k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6.
k=3: [order 17] for n>18.
k=4: [order 71] for n>72.
EXAMPLE
Some solutions for n=7, k=4
..0..1..0..1. .0..1..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..0
..0..1..0..1. .1..1..0..1. .0..0..1..1. .1..1..1..0. .1..1..0..1
..1..1..1..1. .0..1..0..0. .1..0..1..0. .0..1..0..0. .0..1..0..0
..0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..1..1..0. .1..1..0..0. .0..0..1..1. .1..1..0..1. .0..0..0..1
..0..1..0..0. .1..1..1..0. .0..0..0..1. .0..1..0..0. .0..1..0..0
..1..0..0..1. .0..1..1..0. .1..0..0..1. .1..0..0..1. .1..0..0..0
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A297901.
Sequence in context: A187199 A297907 A298501 * A299393 A299194 A300030
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 17 2018
STATUS
approved