login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298501
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 3, 4, 3, 5, 3, 3, 5, 8, 13, 1, 13, 8, 13, 34, 4, 4, 34, 13, 21, 73, 5, 38, 5, 73, 21, 34, 203, 6, 54, 54, 6, 203, 34, 55, 594, 20, 97, 281, 97, 20, 594, 55, 89, 1443, 35, 467, 403, 403, 467, 35, 1443, 89, 144, 4013, 70, 1105, 2353, 277, 2353, 1105, 70, 4013, 144, 233
OFFSET
1,2
COMMENTS
Table starts
..1....2..3....5.....8....13.....21......34.......55........89........144
..2....4..3...13....34....73....203.....594.....1443......4013......11114
..3....3..1....4.....5.....6.....20......35.......70.......174........365
..5...13..4...38....54....97....467....1105.....3354.....12283......37107
..8...34..5...54...281...403...2353...12942....43319....219059....1139692
.13...73..6...97...403...277...1602....6037....19001.....93205.....385257
.21..203.20..467..2353..1602..24272..118439...372820...3857775...22638601
.34..594.35.1105.12942..6037.118439.1377101..4336887..60191437..664833900
.55.1443.70.3354.43319.19001.372820.4336887.10659243.151971896.1550220630
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +3*a(n-2) +8*a(n-3) -4*a(n-4) -16*a(n-5) for n>6
k=3: [order 15] for n>16
k=4: [order 51] for n>54
EXAMPLE
Some solutions for n=6 k=4
..0..1..0..1. .0..0..0..0. .0..1..1..1. .0..0..1..1. .0..0..0..1
..1..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..1. .1..1..0..0
..1..1..0..1. .1..1..1..1. .0..1..0..0. .1..0..1..0. .1..1..1..0
..1..1..0..1. .0..0..0..0. .0..1..0..1. .1..0..1..1. .0..0..0..1
..0..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..0. .0..0..1..1
..1..1..0..1. .1..1..1..1. .1..1..0..0. .1..0..0..1. .1..1..1..0
CROSSREFS
Column 1 is A000045(n+1).
Column 2 is A297901.
Sequence in context: A047675 A187199 A297907 * A298320 A299393 A299194
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 20 2018
STATUS
approved