

A232451


Number of prime divisors of (10^(n+3) + 666)*10^(n+1) + 1 (see A232449) counted with multiplicity.


2



1, 2, 2, 3, 4, 3, 5, 4, 2, 5, 5, 4, 3, 1, 2, 3, 6, 4, 3, 6, 4, 2, 4, 5, 2, 4, 3, 6, 7, 7, 4, 3, 2, 4, 5, 3, 4, 7, 4, 6, 6, 4, 1, 4, 5, 4, 6, 6, 5, 3, 6, 4, 6, 6, 4, 11, 6, 6, 6, 4, 5, 5, 2, 6, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Belphegor numbers (A232449), though large and rarely prime (A232448), tend to contain only very few prime factors. One wonders whether this sequence might be bounded.
From Robert Israel, Feb 23 2017: (Start)
The sequence is unbounded.
Indeed, if p is in A001913 such that the polynomial 10^4 x^2 + 6660 x + 1 has a simple root mod p, then for all k there exist Belphegor numbers divisible by p^k.
For example, p=29 works; we have A232449(n) divisible by 29^k for n = 6, 158, 5522, 41570, 8153130, 107172470, 3553045502, 136793469406, 2761185750502, 142830181379582, ...
(End)


LINKS

Table of n, a(n) for n=0..64.
FactorDB, (10^(n+3)+666)*10^(n+1)+1.
Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
Wikipedia, Belphegor's prime


MAPLE

seq(numtheory:bigomega(10^(2*n+4)+666*10^(n+1)+1), n=0..30); # Robert Israel, Feb 23 2017


MATHEMATICA

Table[Total[Transpose[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1]][[2]]], {n, 0, 25}] (* T. D. Noe, Nov 28 2013 *)


PROG

(PARI) a(n)=bigomega(10^(n+1)*(10^(n+3)+666)+1) \\ Charles R Greathouse IV, Nov 26 2013
(MAGMA) [&+[p[2]: p in Factorization(666*10^(n+1)+100^(n+2)+1)]: n in [0..40]]; // Bruno Berselli, Nov 27 2013


CROSSREFS

Cf. A001913, A232448 (indices of Belphegor primes), A232449 (Belphegor numbers), A232450 (largest prime factor of A232449(n)).
Sequence in context: A299393 A299194 A300030 * A299451 A300089 A298230
Adjacent sequences: A232448 A232449 A232450 * A232452 A232453 A232454


KEYWORD

nonn,more


AUTHOR

Stanislav Sykora, Nov 24 2013


EXTENSIONS

a(45)a(64) from Amiram Eldar, Apr 11 2020


STATUS

approved



