|
|
A232451
|
|
Number of prime divisors of (10^(n+3) + 666)*10^(n+1) + 1 (see A232449) counted with multiplicity.
|
|
2
|
|
|
1, 2, 2, 3, 4, 3, 5, 4, 2, 5, 5, 4, 3, 1, 2, 3, 6, 4, 3, 6, 4, 2, 4, 5, 2, 4, 3, 6, 7, 7, 4, 3, 2, 4, 5, 3, 4, 7, 4, 6, 6, 4, 1, 4, 5, 4, 6, 6, 5, 3, 6, 4, 6, 6, 4, 11, 6, 6, 6, 4, 5, 5, 2, 6, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The Belphegor numbers (A232449), though large and rarely prime (A232448), tend to contain only very few prime factors. One wonders whether this sequence might be bounded.
From Robert Israel, Feb 23 2017: (Start)
The sequence is unbounded.
Indeed, if p is in A001913 such that the polynomial 10^4 x^2 + 6660 x + 1 has a simple root mod p, then for all k there exist Belphegor numbers divisible by p^k.
For example, p=29 works; we have A232449(n) divisible by 29^k for n = 6, 158, 5522, 41570, 8153130, 107172470, 3553045502, 136793469406, 2761185750502, 142830181379582, ...
(End)
|
|
LINKS
|
Table of n, a(n) for n=0..64.
FactorDB, (10^(n+3)+666)*10^(n+1)+1.
Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
Wikipedia, Belphegor's prime
|
|
MAPLE
|
seq(numtheory:-bigomega(10^(2*n+4)+666*10^(n+1)+1), n=0..30); # Robert Israel, Feb 23 2017
|
|
MATHEMATICA
|
Table[Total[Transpose[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1]][[2]]], {n, 0, 25}] (* T. D. Noe, Nov 28 2013 *)
|
|
PROG
|
(PARI) a(n)=bigomega(10^(n+1)*(10^(n+3)+666)+1) \\ Charles R Greathouse IV, Nov 26 2013
(MAGMA) [&+[p[2]: p in Factorization(666*10^(n+1)+100^(n+2)+1)]: n in [0..40]]; // Bruno Berselli, Nov 27 2013
|
|
CROSSREFS
|
Cf. A001913, A232448 (indices of Belphegor primes), A232449 (Belphegor numbers), A232450 (largest prime factor of A232449(n)).
Sequence in context: A299393 A299194 A300030 * A299451 A300089 A298230
Adjacent sequences: A232448 A232449 A232450 * A232452 A232453 A232454
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Stanislav Sykora, Nov 24 2013
|
|
EXTENSIONS
|
a(45)-a(64) from Amiram Eldar, Apr 11 2020
|
|
STATUS
|
approved
|
|
|
|